
1. Introduction
Mobile Ad Hoc Networks (MANETs) represent 

a foundational paradigm of decentralized, self-

configuring wireless networks without fixed 

infrastructure [1]. Their application spectrum 

has expanded dramatically, encompassing 

tactical military communications, emergency 

response operations, large-scale IoT 

ecosystems, and vehicular networks (VANETs) 

[2, 3]. A contemporary challenge within this 

domain is the emergence of dense MANET 

deployments, characterized by a high number 

of nodes per unit area. While density can 

enhance connectivity and redundancy, it 

simultaneously exacerbates critical resource 

constraints, most notably finite battery energy 

[4]. 

 

The network lifetime is a quintessential metric 

for evaluating the sustainability and operational 

efficacy of a MANET. It is often defined as the 

time duration until a certain percentage of 

nodes deplete their energy, or when the network 

partitions, rendering it dysfunctional [5]. In 

dense scenarios, the lifetime maximization 

problem becomes a high-dimensional, NP-hard 

optimization challenge [6]. It involves intricate 

trade-offs between: 

• Transmission Power Control: Higher 

power extends communication range 

but drains energy rapidly and increases 

interference. 

• Routing Path Selection: Consistently 

using energy-rich nodes as relays can 

create “energy holes” or hotspots, 

leading to premature network failure 

[7]. 

• Traffic Load Balancing: Distributing 

data forwarding responsibilities 

equitably across the network. 
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• Topology Dynamics: Adapting to 

constant node mobility and fluctuating 

link quality. 

 

Traditional deterministic optimization 

techniques are often inadequate for this 

complex problem space due to its non-linearity, 

multi-modality, and dynamic nature [8]. This 

has propelled the adoption of meta-heuristic 

algorithms, which are high-level procedures 

designed to find near-optimal solutions 

efficiently [9]. Algorithms such as Particle 

Swarm Optimization (PSO) [10], Genetic 

Algorithms (GA) [11], Ant Colony 

Optimization (ACO) [12], and more recently, 

the Grey Wolf Optimizer (GWO) [13] and 

Firefly Algorithm (FA) [14] have been 

successfully applied to various MANET 

challenges. However, standalone meta-

heuristics often suffer from limitations like 

premature convergence (getting stuck in local 

optima) or poor exploitation of promising 

search regions [15]. To overcome these 

drawbacks, hybridization has emerged as a 

powerful strategy [16]. This paper proposes a 

sophisticated hybrid meta-heuristic, the Grey 

Wolf-Levy Firefly Algorithm (GWL-FA), 

specifically engineered for the lifetime 

maximization problem in dense MANETs. The 

core innovation lies in leveraging the robust 

social hierarchy of GWO for effective 

exploitation, while injecting the global 

exploration prowess of FA with Lévy flights to 

escape local optima and navigate the vast 

search space of dense network configurations. 

 

The principal contributions of this work are: 

1. The formulation of the network 

lifetime maximization problem in 

dense MANETs as a multi-objective 

function integrating residual energy, 

node degree, and path loss. 

2. The design and development of the 

novel GWL-FA hybrid algorithm. 

3. A comprehensive performance 

evaluation through extensive 

simulations, benchmarking against 

established protocols and standalone 

algorithms. 

4. A detailed discussion on future 

research trajectories to further advance 

this field. 

 

The remainder of this paper is organized as 

follows: Section 2 provides a detailed literature 

review. Section 3 outlines the system model and 

problem formulation. Section 4 elaborates on 

the proposed GWL-FA methodology. Section 5 

presents the simulation setup and a thorough 

discussion of results. Finally, Section 6 

concludes the paper and delineates future work. 

 

2. Literature Review 
The quest for maximizing network lifetime in 

MANETs has been a fertile area of research for 

over two decades. Early work primarily focused 

on designing energy-aware routing protocols. 

The Energy-Aware Dynamic Source Routing 

(EA-DSR) protocol [17] modified the standard 

DSR by incorporating residual battery capacity 

into the routing metric. Similarly, the Power-

Aware Routing Optimization 

(PARO) protocol [18] aimed to minimize total 

transmission power. While effective in simple 

scenarios, these heuristic-based protocols often 

lack the global optimization perspective 

required for dense, complex networks. The 

limitations of conventional approaches paved 

the way for meta-heuristics. Genetic 

Algorithms (GAs) were among the first to be 

applied. For instance, [19] used a GA to evolve 

routing paths that minimized total energy 

consumption and balanced traffic load. 

However, GAs can be computationally 

intensive and slow to converge. Particle 

Swarm Optimization (PSO) gained 

popularity due to its simplicity and rapid 

convergence. [20] proposed a PSO-based 

clustering protocol where cluster heads were 

selected based on a fitness function combining 

energy, mobility, and node degree. Yet, PSO is 

prone to premature convergence, especially in 

complex search spaces. 

 

Ant Colony Optimization (ACO), inspired by 

the foraging behavior of ants, has been 

particularly successful in solving routing 

problems. [21] developed an ACO-based multi-

path routing algorithm that distributed traffic 

across multiple paths to prevent energy 

depletion of any single node. The work in [22] 

further enhanced ACO with fuzzy logic to 

handle the uncertainty in network conditions. 

Despite their robustness, ACO-based methods 

can suffer from slow initial convergence. More 

recent nature-inspired algorithms have shown 

great promise. The Grey Wolf Optimizer 

(GWO), proposed by Mirjalili et al. [13], 

simulates the leadership hierarchy and hunting 

K. Thamizhmaran
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 14 Volume 11, 2026



mechanism of grey wolves (Alpha, Beta, Delta, 

Omega). Its effectiveness in exploitation and 

local search has been demonstrated in various 

engineering domains. In the context of 

MANETs, [23] applied GWO for cluster head 

selection in WSNs, showing improved network 

lifetime. However, its exploration capability 

can be limited. 

 

The Firefly Algorithm (FA) [14] is another 

powerful meta-heuristic, known for its ability to 

explore the search space effectively through its 

attraction mechanism. The incorporation 

of Lévy flights, a random walk with heavy-

tailed step lengths, has been shown to enhance 

its global search capability significantly [24]. 

[25] utilized a FA-based approach for optimal 

route discovery, considering link stability and 

energy. However, FA's performance can 

degrade in high-dimensional problems due to 

its computational complexity in calculating 

attractions between all pairs of fireflies. 

 

Recognizing the complementary strengths of 

different algorithms, researchers have explored 

hybridization. [26] proposed a hybrid PSO-GA 

algorithm for routing, using PSO for local 

search and GA for global exploration. [27, 35] 

combined ACO with Honey Bee Mating 

Optimization (HBMO) for congestion-aware 

routing. A recent study [28] integrated GWO 

with Cuckoo Search (CS) for secure routing, 

demonstrating improved performance. 

However, the specific synergy between GWO's 

social hierarchy and FA's Lévy-flight-enhanced 

attraction for the dense MANET lifetime 

problem remains largely unexplored.  

 

Furthermore, contemporary research is 

beginning to leverage machine learning (ML). 

[29] used a Q-learning approach for adaptive 

power control, while [30] employed a Deep 

Reinforcement Learning (DRL) model for 

dynamic routing. While promising, these ML-

based approaches often require substantial data 

and computational resources, which may not be 

feasible for resource-constrained MANET 

nodes. 

 

Table 1: Comparative Summary of Related Works on MANET Lifetime Maximization 

Reference Algorithm/Protocol Key Contribution Limitations 

[17] EA-DSR 
Integrated residual energy 

into DSR routing metric. 

Local optima, not suitable for 

dense networks. 

[19] 
Genetic Algorithm 

(GA) 

Evolved energy-efficient 

routing paths. 

High computational overhead, 

slow convergence. 

[20] 
Particle Swarm 

Optimization (PSO) 

PSO-based cluster head 

selection. 

Prone to premature 

convergence. 

[21] 
Ant Colony 

Optimization (ACO) 

Multi-path routing for load 

balancing. 
Slow initial convergence. 

[23] 
Grey Wolf Optimizer 

(GWO) 

GWO for cluster head 

selection in WSNs. 
Limited exploration capability. 

[25] 
Firefly Algorithm 

(FA) 

FA for route discovery with 

link stability. 

High complexity for 

large/dense networks. 

[28] 
GWO-Cuckoo Search 

(Hybrid) 
Hybrid for secure routing. 

Not specifically designed for 

lifetime in dense MANETs. 

[30] 
Deep Reinforcement 

Learning (DRL) 

Dynamic routing using 

DRL. 

High resource requirements, 

complex implementation. 

This review underscores a clear research gap: 

the need for a robust, efficient, and specifically 

tailored hybrid meta-heuristic that combines 

strong exploitation (to refine good solutions) 

with powerful exploration (to discover new 

solution regions) for the paramount challenge 

of lifetime maximization in dense MANETs. 

Our proposed GWL-FA algorithm is designed 

to fill this gap. 

3. System Model and 
Problem Formulation  
Network Model: We model the dense MANET 

as an undirected graph 𝐺(𝑁, 𝐸), where: 

• 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑚} is the finite set 

of 𝑚 mobile nodes, randomly deployed 

in a square area 𝐴 = 𝐿 × 𝐿. 
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• 𝐸 is the set of wireless links. A 

link 𝑒(𝑖, 𝑗) exists between 

nodes 𝑛𝑖 and 𝑛𝑗 if the Euclidean 

distance 𝑑𝑖𝑗 ≤ 𝑅𝑡𝑥(𝑖), where 𝑅𝑡𝑥(𝑖) is 

the transmission range of 𝑛𝑖. 
Each node 𝑛𝑖 is characterized by: 

• Initial Energy: 𝐸𝑖𝑛𝑖𝑡(𝑖). 
• Residual Energy: 𝐸𝑟𝑒𝑠(𝑖), where 0 ≤

𝐸𝑟𝑒𝑠(𝑖) ≤ 𝐸𝑖𝑛𝑖𝑡(𝑖). 
• Location: (𝑥𝑖, 𝑦𝑖), which changes over 

time based on a mobility model (e.g., 

Random Waypoint). 

• Transmission Power: 𝑃𝑡𝑥(𝑖), a 

variable optimized by our algorithm 

within a range [𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥]. 
 

Energy Consumption Model: We adopt the 

first-order radio model [31, 33], a standard in 

network energy analysis. The energy expended 

to transmit a 𝑘-bit packet over a distance 𝑑 is: 

𝐸𝑇𝑥(𝑘, 𝑑) = 𝑘 ⋅ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ⋅ 𝜖𝑎𝑚𝑝 ⋅ 𝑑
𝜆 

where: 

• 𝐸𝑒𝑙𝑒𝑐 is the energy consumed by the 

transmitter/receiver electronics (e.g., 

50 nJ/bit). 

• 𝜖𝑎𝑚𝑝 is the transmitter amplifier's 

energy dissipation (e.g., 10 pJ/bit/m² 

for free space 𝜆 = 2, or 0.0013 

pJ/bit/m⁴ for multipath fading 𝜆 = 4). 

• 𝜆 is the path-loss exponent. 

The energy consumed to receive a 𝑘-bit packet 

is: 

𝐸𝑅𝑥(𝑘) = 𝑘 ⋅ 𝐸𝑒𝑙𝑒𝑐  
 

Problem Formulation: Lifetime 

Maximization: We define network 

lifetime 𝑇𝑛𝑒𝑡 as the time from network 

initialization until the first node depletes its 

energy (i.e., the network's "bottleneck" 

lifetime) [32, 34, 36]. Our goal is to 

maximize 𝑇𝑛𝑒𝑡 by finding an optimal routing 

path 𝑃𝑠,𝑑 for each source-destination 

pair (𝑠, 𝑑) and an optimal transmission power 

level for each node. The objective function is 

formulated as a fitness function 𝐹 to be 

maximized. For a given path 𝑃𝑠,𝑑 =

{𝑠, 𝑛1, 𝑛2, . . . , 𝑛𝑘 , 𝑑}, the fitness is a multi-

component function: 

𝐹(𝑃𝑠,𝑑) = 𝑤1 ⋅ 𝑓𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑤2 ⋅ 𝑓𝑑𝑒𝑔𝑟𝑒𝑒 +𝑤3

⋅ 𝑓𝑝𝑎𝑡ℎ_𝑙𝑜𝑠𝑠 

 

where 𝑤1, 𝑤2, 𝑤3 are weighting coefficients 

such that 𝑤1 +𝑤2 +𝑤3 = 1. 

1. Energy Component 

(𝑓𝑒𝑛𝑒𝑟𝑔𝑦): Promotes paths with high 

residual energy. 

𝑓𝑒𝑛𝑒𝑟𝑔𝑦 = min⁡
𝑛𝑖∈𝑃𝑠,𝑑

(𝐸𝑟𝑒𝑠(𝑖))/𝐸𝑖𝑛𝑖𝑡_𝑎𝑣𝑔 

This min-function ensures no node on the path 

is critically low on energy, directly targeting the 

bottleneck. 

2. Node Degree Component 

(𝑓𝑑𝑒𝑔𝑟𝑒𝑒): Mitigates hotspot formation 

by penalizing paths that traverse overly 

central nodes (high degree). The 

degree 𝑑𝑒𝑔(𝑖) is the number of 

neighbors of 𝑛𝑖. 

𝑓𝑑𝑒𝑔𝑟𝑒𝑒 = 1 −

max⁡
𝑛𝑖∈𝑃𝑠,𝑑

(𝑑𝑒𝑔(𝑖))

𝑑𝑒𝑔𝑚𝑎𝑥
 

where 𝑑𝑒𝑔𝑚𝑎𝑥 is the maximum possible node 

degree in the network. 

3. Path Loss Component 

(𝑓𝑝𝑎𝑡ℎ_𝑙𝑜𝑠𝑠): Encourages shorter, more 

reliable paths with lower total 

transmission cost. 

𝑓𝑝𝑎𝑡ℎ_𝑙𝑜𝑠𝑠 = 1 −
∑𝑙∈𝑃𝑠,𝑑 𝜖𝑎𝑚𝑝 ⋅ 𝑑𝑙

𝜆

𝑃𝐿𝑚𝑎𝑥
 

where 𝑃𝐿𝑚𝑎𝑥 is a normalization factor 

representing the maximum acceptable path loss. 

Thus, the overall optimization problem is: 

Maximize 𝐹(𝑃𝑠,𝑑)∀(𝑠, 𝑑) pairs 

Subject to: 𝐸𝑟𝑒𝑠(𝑖) > 0∀𝑛𝑖 ∈ 𝑁, 𝑃𝑚𝑖𝑛

≤ 𝑃𝑡𝑥(𝑖) ≤ 𝑃𝑚𝑎𝑥 
 

4. Proposed-Methodology 

The GWL-FA Algorithm 

The Grey Wolf-Levy Firefly Algorithm (GWL-

FA) is a sequential hybrid that uses GWO's 

social hierarchy to guide the population and 

FA's Lévy flights to introduce stochastic 

exploration. The core idea is to treat each 

candidate solution (a complete routing and 

power configuration for the network) as a 

"wolf" whose position is updated based on the 

leadership hierarchy, but with a probability, it 

undergoes a Firefly-inspired movement via 

Lévy flight to explore new areas of the search 

space as show in Figure 1 Flowchart of the 

proposed GWL-FA. 

 

Solution Representation (Encoding): Each 

solution (an agent in the meta-heuristic 

population) is represented as a vector 𝑋⃗. For a 

network with 𝑚 nodes, the vector has two 

segments: 
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• Routing Segment: A sequence of node 

IDs representing a path for a pre-

selected source-destination pair. Paths 

of variable length are handled using a 

null-padding technique. 

• Power Segment: A list of 𝑚 real 

values, each representing the 

transmission power 𝑃𝑡𝑥(𝑖) for node 𝑛𝑖. 
 

Phases of the GWL-FA Algorithm:  

Phase 1 Initialization: A population 

of 𝑁𝑝𝑜𝑝 wolves/fireflies is randomly 

initialized. Each agent's position 𝑋⃗𝑖 is 

generated, creating random valid paths and 

assigning random power levels within bounds. 

The fitness 𝐹(𝑋⃗𝑖) for each agent is calculated. 

Phase 2 Main Loop (Iterative Update): For 

each iteration 𝑡 until the maximum 

iteration 𝑇𝑚𝑎𝑥 is reached, the following steps 

are performed: 

1. Fitness Evaluation & Hierarchy 

Assignment: The population is sorted 

based on fitness. The top three fittest 

agents are designated as the alpha (𝑋⃗𝛼), 

beta (𝑋⃗𝛽), and delta (𝑋⃗𝛿) wolves. The 

rest are considered omega (𝑋⃗𝜔). 

2. GWO-based Position Update 

(Exploitation): The position of each 

omega wolf is updated based on the 

leadership of alpha, beta, and delta. 

𝐷⃗⃗⃗𝛼 =∣ 𝐶1 ⋅ 𝑋⃗𝛼 − 𝑋⃗ ∣, 𝐷⃗⃗⃗𝛽 =∣ 𝐶2 ⋅ 𝑋⃗𝛽 − 𝑋⃗ ∣, 𝐷⃗⃗⃗𝛿

=∣ 𝐶3 ⋅ 𝑋⃗𝛿 − 𝑋⃗ ∣ 

𝑋⃗1 = 𝑋⃗𝛼 − 𝐴1 ⋅ 𝐷⃗⃗⃗𝛼, 𝑋⃗2 = 𝑋⃗𝛽 − 𝐴2 ⋅ 𝐷⃗⃗⃗𝛽 , 𝑋⃗3

= 𝑋⃗𝛿 − 𝐴3 ⋅ 𝐷⃗⃗⃗𝛿  

𝑋⃗𝐺𝑊𝑂(𝑡 + 1) =
𝑋⃗1 + 𝑋⃗2 + 𝑋⃗3

3
 

where 𝐴 = 2𝑎⃗ ⋅ 𝑟1 − 𝑎⃗ and 𝐶 = 2 ⋅ 𝑟2. The 

vector 𝑎⃗ decreases linearly from 2 to 0 over 

iterations, and 𝑟1, 𝑟2 are random vectors in [0, 

1]. 

3. FA-based Lévy Flight Update 

(Exploration): With a 

probability 𝑝𝐹𝐴 (e.g., 0.3), an omega 

wolf abandons the GWO update and 

instead performs a Firefly movement. 

For a wolf 𝑖, if there exists a fitter 

wolf 𝑗 (based on the sorted hierarchy), 

it is attracted to 𝑗. The movement is 

governed by: 

𝑋⃗𝐹𝐴(𝑡 + 1) = 𝑋⃗𝑖(𝑡) + 𝛽0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑋⃗𝑗(𝑡)

− 𝑋⃗𝑖(𝑡)) + 𝛼 ⋅ Levy(𝛽) 
where: 

o 𝛽0 is the attractiveness at 𝑟 =
0. 

o 𝛾 is the light absorption 

coefficient. 

o 𝑟𝑖𝑗 is the Cartesian distance 

between the positions 

of 𝑖 and 𝑗 in the solution space. 

o 𝛼 is a randomization 

parameter. 

o Levy(𝛽) is a Lévy random step 

drawn from the 

distribution Levy(𝛽) ∼ 𝑢 =

𝑡−𝛽 , (1 < 𝛽 ≤ 3). This step is 

calculated as [24]: 

Levy(𝛽) = 0.01 ×
𝑟1 × 𝜎

∣ 𝑟2 ∣
1/𝛽

, 𝜎

= (
Γ(1 + 𝛽) × sin⁡(𝜋𝛽/2)

Γ((1 + 𝛽)/2) × 𝛽 × 2(𝛽−1)/2
)1/𝛽 

where 𝑟1, 𝑟2 are random numbers from a 

standard normal distribution, and Γ is the 

Gamma function. 

4. Elitism and Selection: The new 

positions 𝑋⃗𝐺𝑊𝑂(𝑡 + 1) and 𝑋⃗𝐹𝐴(𝑡 +
1) are evaluated. The population for 

the next generation is formed by 

selecting the fittest agents from the 

combined pool of old and new 

populations, ensuring elitism. 

 

Phase 3 Termination and Solution 

Extraction: The algorithm terminates 

after 𝑇𝑚𝑎𝑥 iterations. The final 𝑋⃗𝛼 solution is 

deployed as the optimal routing path and power 

configuration for the network. This process is 

invoked periodically or when significant 

topology changes are detected.
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Figure 1: Flowchart of the proposed GWL-FA algorithm 

 

5. Simulation Results and 
Discussion  
Simulation Setup: We implemented the 

proposed GWL-FA algorithm and benchmarked 

it against standard GWO, FA, and the 

conventional EA-DSR protocol using the NS-3 

simulator. The simulation parameters are 

summarized in Table 2.

Table 2: Simulation Parameters 

Parameter Value Description 

Simulator NS-3.35 Discrete-event network simulator 

Simulation Area 500m x 500m Fixed deployment area 

Number of Nodes 50, 100, 150, 200 Variable node density 

Initialize Population of Wolves/Fireflies 

Evaluate Fitness F(X) for each agent 

Identify Alpha, Beta, Delta Wolves 

For each Omega Wolf 

  V (With prob. p_FA) V (With prob. 1-p_FA) 

[FA-Lévy Update] [GWO Update] 

Evaluate New Positions 

Apply Elitism & Form New Population 

NO 

Next Iteration Deploy Alpha's Solution 

Convergen

ce reached? 
YES 

Start 

Stop 
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Mobility Model Random Waypoint Speed: 1-5 m/s, Pause: 2s 

Traffic Model CBR (UDP) 10 sources, 512 bytes/packet, 4 pkts/s 

Initial Energy 100 Joules Uniform for all nodes 

𝐸𝑒𝑙𝑒𝑐 50 nJ/bit Transceiver electronics energy 

𝜖𝑎𝑚𝑝 10 pJ/bit/m² Amplifier energy (free space) 

𝑃𝑡𝑥 Range 1 mW - 100 mW Adjustable transmission power 

Path Loss Model Friis Free space path loss 

GWL-FA Population 50 Number of agents 

GWL-FA Iterations 100 Maximum iterations 

𝑝𝐹𝐴 0.3 Probability of FA update 

𝛽0, 𝛾, 𝛼 1.0, 1.0, 0.2 FA parameters 

Weights 𝑤1, 𝑤2, 𝑤3 0.6, 0.2, 0.2 Fitness function weights 

 

Each simulation scenario was run 20 times with 

different random seeds, and the results were 

averaged to ensure statistical significance. 

 

Performance Metrics: We evaluated the 

algorithms based on the following metrics: 

1. Network Lifetime (s): Time until the 

first node dies (FND). 

2. Packet Delivery Ratio 

(PDR): (Received Packets / Sent 

Packets) * 100%. 

3. Average End-to-End Delay 

(ms): Average time for a packet to 

traverse from source to destination. 

4. Total Energy Consumption 

(J): Cumulative energy consumed by 

all nodes. 

5. Standard Deviation of Residual 

Energy: Measures energy balance 

across the network. 

 

6. Results and Analysis 
Impact on Network Lifetime: Table 3 and 

Figure 2 illustrates the network lifetime (FND) 

for different node densities. GWL-FA 

consistently outperforms all other algorithms 

across all densities. The performance gap 

widens as density increases. At 200 nodes, 

GWL-FA achieves a lifetime of ~1450 seconds, 

which is 28.5% higher than GWO (~1130s), 

34.7% higher than FA (~1076s), and a 

remarkable 52.1% higher than EA-DSR 

(~953s). This superior performance is attributed 

to the effective hybrid strategy: GWO's 

mechanism efficiently exploits good solutions 

(paths with high energy), while the FA's Lévy 

flight component allows the algorithm to 

"jump" out of local optima, discovering 

configurations that better balance load and 

conserve the energy of bottleneck nodes. 

 

Table 3: Network Lifetime (First Node 

Dead) vs. Node Density 

 

Node 

Density 

EA-

DSR 

FA GWO GWL-

FA 

50 1200s 1350s 1400s 1550s 

100 1100s 1200s 1250s 1420s 

150 1000s 1100s 1150s 1380s 

200 935s 1076s 1130s 1450s 

 

 
 

Figure 2: Network Lifetime (First Node 

Dead) vs. Node Density 

 

Packet Delivery Ratio (PDR) and End-to-End 

Delay: Table 4 and Figure 3 shows the PDR and 

delay for the 150-node scenario. GWL-FA 

maintains a PDR above 96%, which is 

significantly better than the other methods. EA-

DSR suffers from a lower PDR due to its 

inability to adapt to dynamic link qualities and 

energy depletion. The hybrid approach of 

GWL-FA finds stable, energy-aware paths, 

reducing link breaks and packet drops. The end-

to-end delay for GWL-FA is also the lowest. By 

optimizing transmission power and selecting 

efficient paths, it reduces both transmission 

time and queueing delays associated with 

congested or poor-quality links. 
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Table 4: PDR and Delay for 150-Node 

Scenario 

Algorithm Packet 

Delivery 

Ratio (%) 

Average End-

to-End Delay 

(ms) 

EA-DRS 88.5 45.2 

FA 92.1 38.7 

GWO 93.8 35.1 

GWL-FA 96.4 31.5 

 

 

Figure 3: PDR and Delay for 150-Node 

Scenario 

Energy Efficiency and Balance: Table 5 and 

Figure 4 shows the total energy consumption 

over time for the 100-node scenario. GWL-FA 

demonstrates the most gradual energy 

consumption rate, leading to the longest 

operational time. Furthermore, the standard 

deviation of residual energy when the first node 

dies is lowest for GWL-FA (see Table 4). A low 

standard deviation indicates that energy c

onsumption is evenly distributed across the 

network, successfully preventing the formation 

of energy hotspots. This is a direct consequence 

of the node degree component (𝑓𝑑𝑒𝑔𝑟𝑒𝑒) in the 

fitness function, which discourages the overuse 

of central nodes. 

 

 

Table 5: Standard Deviation of Residual 

Energy at FND (100-node scenario) 

Algorithm Std. Dev. of Residual 

Energy (J) 

EA-DRS 18.5 

FA 15.2 

GWO 12.8 

GWL-FA 9.1 

  
Figure 4: Standard Deviation of Residual 

Energy at FND (100-node scenario) 

Convergence Analysis: Figure 4 plots the 

convergence characteristics of the meta-

heuristic algorithms for a single simulation run 

(100 nodes). The GWO converges quickly but 

plateaus early, indicating premature 

convergence. The FA converges slower but 

reaches a slightly better fitness than GWO due 

to its exploration capability. The GWL-FA 

algorithm, however, starts with a rapid 

convergence (inherited from GWO) and then, 

aided by the Lévy flights, makes significant 

jumps in fitness even at later iterations, 

ultimately converging to the highest fitness 

value. This demonstrates the successful synergy 

between the two algorithms.

 

7. Conclusion and Future Work
This paper presented a novel hybrid meta-

heuristic algorithm, GWL-FA, for maximizing 

network lifetime in dense MANETs. By 

formulating the problem as a multi-objective of   

 

optimization and designing a hybrid that 

capitalizes on the exploitation strength of GWO 

and the global exploration prowess of Lévy-

flight-enhanced FA, we have demonstrated a 

significant performance improvement. 

Extensive simulations confirm that GWL-FA 

substantially prolongs network lifetime, 

improves delivery ratio, reduces delay, and 

achieves superior energy balance compared to 

state-of-the-art algorithms and protocols, 

especially in high-density scenarios. 

 

The promising results of this work open several 

avenues for future research: 

1. Multi-Objective Formalization with 

Pareto Fronts: The current work uses 

a weighted sum approach for the fitness 

function. A more rigorous approach 

would be to treat it as a true multi-
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objective problem using Pareto-based 

algorithms like NSGA-II or MOEA/D 

[33], allowing network administrators 

to choose from a set of non-dominated 

solutions based on specific application 

needs. 

2. Integration with Machine Learning: 

a. Predictive Analytics: Integrate a lightweight 

machine learning model (e.g., a Linear 

Regression or TinyML model) to predict node 

mobility and traffic patterns. This forecast can 

be fed into the GWL-FA fitness function to 

make more proactive and robust routing/power 

decisions [34]. 

 

b. Meta-Heuristic Parameter Tuning: Use 

Reinforcement Learning to dynamically adapt 

the GWL-FA parameters (e.g., 𝑝𝐹𝐴, 𝛼) during 

the optimization process, creating a self-

adaptive algorithm that performs well under 

varying network conditions [35]. 

 

c. Quantum-Inspired Meta-Heuristics: With 

the advent of quantum computing, exploring 

Quantum-inspired GWO (QIGWO) or 

Quantum-based FA could be a groundbreaking 

step. These algorithms use quantum principles 

like superposition and entanglement to 

represent and evaluate a vast number of 

solutions simultaneously, potentially offering 

exponential speedups for solving the NP-hard 

lifetime maximization problem. 

 

D. Hardware-in-the-Loop Testing and Real-

World Deployment: While NS-3 simulations 

are valuable, the next step is to validate the 

algorithm's performance in more realistic 

testbeds using platforms like Raspberry Pi or 

dedicated sensor motes, dealing with real-world 

radio irregularities and interference. 

 

e. Security-Aware Lifetime 

Maximization: Future work will incorporate 

security metrics (e.g., trust levels, intrusion 

detection confidence) into the fitness function. 

This would ensure that the chosen paths are not 

only energy-efficient but also secure against 

malicious nodes, leading to the development of 

robust and resilient MANETs. 

 

By pursuing these directions, the research 

community can continue to push the boundaries 

of performance and intelligence in resource-

constrained wireless networks. 
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