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Abstract: The proliferation of the Internet of Things (IoT) and mission-critical applications has led to the dense
deployment of Mobile Ad Hoc Networks (MANETS), where energy efficiency is a paramount concern. The
network lifetime, a key performance metric, is severely constrained by the limited battery capacity of constituent
nodes. This paper addresses the complex, multi-constrained optimization problem of maximizing network
lifetime in dense MANETSs. We propose a novel hybrid meta-heuristic framework, the Grey Wolf-Levy Firefly
Algorithm (GWL-FA), which synergistically combines the social hierarchy and hunting mechanisms of the
Grey Wolf Optimizer (GWO) with the Lévy flight-enhanced exploration of the Firefly Algorithm (FA). The
primary objective is to determine an optimal routing and power control strategy that balances traffic load,
minimizes energy consumption, and mitigates hotspot formation. Simulation results, conducted in NS-3 under
varying node densities (50-200 nodes), demonstrate that GWL-FA significantly outperforms standard GWO,
FA, and Energy-Aware Dynamic Source Routing (EA-DSR) protocols. Specifically, GWL-FA achieves up to
a 28.5% and 34.7% improvement in network lifetime over GWO and FA, respectively, and a 52.1%
improvement over EA-DSR in high-density scenarios (200 nodes). The proposed algorithm also shows superior
performance in terms of packet delivery ratio (maintained above 96%) and end-to-end delay. We present a
comprehensive analysis of the results, discuss the convergence behavior, and outline pivotal future research
directions, including the integration of machine learning and quantum computing principles for next-generation
energy-aware MANETS.
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1. Introduction time duration until a certain percentage of

Mobile Ad Hoc Networks (MANETS) represent nodes deplete their energy, or when the network
a foundational paradigm of decentralized, self- partitions, regdermg 1t .dys'functlona.l [5]- . In
configuring wireless networks without fixed dense scenarios, the.: l1f§t1me _maximization
infrastructure [1]. Their application spectrum problgm bpcomes a h1gh—d1mqns1onal, NP—hard
has expanded dramatically, encompassing optimization challenge [6]. It involves intricate

tactical military communications, emergency trade-offs between: .
response  operations,  large-scale  loT » Transmission Power Co.ntr ?l-' Higher
ecosystems, and vehicular networks (VANETS) power .extends communication range
[2, 3]. A contemporary challenge within this but drains energy rapidly and increases
domain is the emergence of dense MANET interference. _
deployments, characterized by a high number * Routing Path Selection: Consistently
of nodes per unit area. While density can using energy-rich nodes as relays can
enhance connectivity and redundancy, it create “energy holes” or hotspots,
simultaneously exacerbates critical resource leading to premature network failure

constraints, most notably finite battery energy [7]. o
[4]. o Traffic Load Balancing: Distributing

data  forwarding  responsibilities

The network lifetime is a quintessential metric equitably across the network.

for evaluating the sustainability and operational
efficacy of a MANET. It is often defined as the
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e Topology Dynamics: Adapting to
constant node mobility and fluctuating
link quality.

Traditional deterministic optimization
techniques are often inadequate for this
complex problem space due to its non-linearity,
multi-modality, and dynamic nature [8]. This
has propelled the adoption of meta-heuristic
algorithms, which are high-level procedures
designed to find near-optimal solutions
efficiently [9]. Algorithms such as Particle
Swarm Optimization (PSO) [10], Genetic
Algorithms  (GA) [11], Ant Colony
Optimization (ACO) [12], and more recently,
the Grey Wolf Optimizer (GWO) [13] and
Firefly Algorithm (FA) [14] have been
successfully applied to various MANET
challenges. However, standalone meta-
heuristics often suffer from limitations like
premature convergence (getting stuck in local
optima) or poor exploitation of promising
search regions [15]. To overcome these
drawbacks, hybridization has emerged as a
powerful strategy [16]. This paper proposes a
sophisticated hybrid meta-heuristic, the Grey
Wolf-Levy Firefly Algorithm (GWL-FA),
specifically engineered for the lifetime
maximization problem in dense MANETSs. The
core innovation lies in leveraging the robust
social hierarchy of GWO for effective
exploitation, while injecting the global
exploration prowess of FA with Lévy flights to
escape local optima and navigate the vast
search space of dense network configurations.

The principal contributions of this work are:

1. The formulation of the network
lifetime maximization problem in
dense MANETs as a multi-objective
function integrating residual energy,
node degree, and path loss.

2. The design and development of the
novel GWL-FA hybrid algorithm.

3. A comprehensive performance
evaluation through extensive
simulations, benchmarking against
established protocols and standalone
algorithms.

4. A detailed discussion on future
research trajectories to further advance
this field.

The remainder of this paper is organized as
follows: Section 2 provides a detailed literature
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review. Section 3 outlines the system model and
problem formulation. Section 4 elaborates on
the proposed GWL-FA methodology. Section 5
presents the simulation setup and a thorough
discussion of results. Finally, Section 6
concludes the paper and delineates future work.

2. Literature Review

The quest for maximizing network lifetime in
MANETs has been a fertile area of research for
over two decades. Early work primarily focused
on designing energy-aware routing protocols.
The Energy-Aware Dynamic Source Routing
(EA-DSR) protocol [17] modified the standard
DSR by incorporating residual battery capacity
into the routing metric. Similarly, the Power-
Aware Routing Optimization
(PARO) protocol [18] aimed to minimize total
transmission power. While effective in simple
scenarios, these heuristic-based protocols often
lack the global optimization perspective
required for dense, complex networks. The
limitations of conventional approaches paved
the way for meta-heuristics. Genetic
Algorithms (GAs) were among the first to be
applied. For instance, [19] used a GA to evolve
routing paths that minimized total energy
consumption and balanced traffic load.
However, GAs can be computationally
intensive and slow to converge. Particle
Swarm Optimization (PSO) gained
popularity due to its simplicity and rapid
convergence. [20] proposed a PSO-based
clustering protocol where cluster heads were
selected based on a fitness function combining
energy, mobility, and node degree. Yet, PSO is
prone to premature convergence, especially in
complex search spaces.

Ant Colony Optimization (ACO), inspired by
the foraging behavior of ants, has been
particularly successful in solving routing
problems. [21] developed an ACO-based multi-
path routing algorithm that distributed traffic
across multiple paths to prevent energy
depletion of any single node. The work in [22]
further enhanced ACO with fuzzy logic to
handle the uncertainty in network conditions.
Despite their robustness, ACO-based methods
can suffer from slow initial convergence. More
recent nature-inspired algorithms have shown
great promise. The Grey Wolf Optimizer
(GWO), proposed by Mirjalili et al. [13],
simulates the leadership hierarchy and hunting
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mechanism of grey wolves (Alpha, Beta, Delta,
Omega). Its effectiveness in exploitation and
local search has been demonstrated in various
engineering domains. In the context of
MANETs, [23] applied GWO for cluster head
selection in WSNs, showing improved network
lifetime. However, its exploration capability
can be limited.

The Firefly Algorithm (FA)[14] is another
powerful meta-heuristic, known for its ability to
explore the search space effectively through its
attraction mechanism. The incorporation
of Lévy flights, a random walk with heavy-
tailed step lengths, has been shown to enhance
its global search capability significantly [24].
[25] utilized a FA-based approach for optimal
route discovery, considering link stability and
energy. However, FA's performance can
degrade in high-dimensional problems due to
its computational complexity in calculating
attractions between all pairs of fireflies.

Recognizing the complementary strengths of
different algorithms, researchers have explored
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hybridization. [26] proposed a hybrid PSO-GA
algorithm for routing, using PSO for local
search and GA for global exploration. [27, 35]
combined ACO with Honey Bee Mating
Optimization (HBMO) for congestion-aware
routing. A recent study [28] integrated GWO
with Cuckoo Search (CS) for secure routing,
demonstrating improved performance.
However, the specific synergy between GWO's
social hierarchy and FA's Lévy-flight-enhanced
attraction for the dense MANET lifetime
problem remains largely unexplored.

Furthermore, contemporary research is
beginning to leverage machine learning (ML).
[29] used a Q-learning approach for adaptive
power control, while [30] employed a Deep
Reinforcement Learning (DRL) model for
dynamic routing. While promising, these ML-
based approaches often require substantial data
and computational resources, which may not be
feasible for resource-constrained MANET
nodes.

Table 1: Comparative Summary of Related Works on MANET Lifetime Maximization

Reference | Algorithm/Protocol Key Contribution Limitations
Integrated residual energy Local optima, not suitable for
[17] EA-DSR into DSR routing metric. dense networks.
Genetic Algorithm Evolved energy-efficient High computational overhead,
[19] :
(GA) routing paths. slow convergence.
[20] Particle Swarm PSO-based cluster head Prone to premature
Optimization (PSO) selection. convergence.
Ant Colony Multi-path routing for load L
[21] Optimization (ACO) | balancing. Slow initial convergence.
Grey Wolf Optimizer | GWO for cluster head .. . o
[23] (GWO) selection in WSN. Limited exploration capability.
[25] Firefly Algorithm FA for route discovery with | High complexity for
(FA) link stability. large/dense networks.
GWO-Cuckoo Search . . Not specifically designed for
28] (Hybrid) Hybrid for secure routing, lifetime in dense MANETs.
[30] Deep Reinforcement | Dynamic routing using High resource requirements,
Learning (DRL) DRL. complex implementation.

This review underscores a clear research gap:
the need for a robust, efficient, and specifically
tailored hybrid meta-heuristic that combines
strong exploitation (to refine good solutions)
with powerful exploration (to discover new
solution regions) for the paramount challenge
of lifetime maximization in dense MANETs.
Our proposed GWL-FA algorithm is designed
to fill this gap.
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3. System Model and

Problem Formulation
Network Model: We model the dense MANET
as an undirected graph G (N, E), where:
e N ={nyn,,...,n,}is the finite set
of m mobile nodes, randomly deployed
inasquare area A = L X L.
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e FEis the set of wireless links. A
link e(i, j) exists between
nodes n; and n; if  the  Euclidean
distance d;; < Ry (i), where R (i) is
the transmission range of n;.

Each node n; is characterized by:

o Initial Energy: E;;,;; (i).

o Residual Energy: E, (i), where 0 <
Eres(i) < Einit(i)-

e Location: (x;, y;), which changes over
time based on a mobility model (e.g.,
Random Waypoint).

e Transmission Power: P, (i), a
variable optimized by our algorithm
within a range [Ppin, Prnax]-

Energy Consumption Model: We adopt the
first-order radio model [31, 33], a standard in
network energy analysis. The energy expended
to transmit a k-bit packet over a distance d is:
Erx(k,d) =k - Egec + k - €amp * d*
where:
e E,cis the energy consumed by the
transmitter/receiver electronics (e.g.,
50 nJ/bit).
*  €gmpis the transmitter amplifier's
energy dissipation (e.g., 10 pJ/bit/m?
for free spaced =2, or 0.0013
pJ/bit/m* for multipath fading 1 = 4).
e Aisthe path-loss exponent.
The energy consumed to receive a k-bit packet
is:
Erx(k) =k - Egiec
Problem Formulation:
Maximization: We define network
lifetime T, as the time from network
initialization until the first node depletes its
energy (i.e., the network's "bottleneck"
lifetime) [32, 34, 36]. Our goal is to
maximize Ty, by finding an optimal routing
path P 4 for each source-destination
pair (s,d) and an optimal transmission power
level for each node. The objective function is
formulated as a fitness function F to be
maximized. For a given pathPs,; =
{s,nq,ny,...,ny,d}, the fitness is a multi-
component function:
F(Psa) = W1 - fenergy + W2 - faegree + W3
' f path_loss

Lifetime

where w;, w,, w; are  weighting coefficients
such that wy +wy, + w3 = 1.
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1. Energy Component
(fenergy): Promotes paths with high
residual energy.

fenergy = nrirég:d(Eres (i))/Einit_avg

This min-function ensures no node on the path
is critically low on energy, directly targeting the
bottleneck.

2. Node Degree Component
(faegree): Mitigates hotspot formation
by penalizing paths that traverse overly
central nodes (high degree). The
degree deg(i)is the number of
neighbors of n;.

max (deg(i))
ni€Pgq

=1-
fdegree degmax

where degpq, 15 the maximum possible node
degree in the network.

3. Path Loss Component
(fpath_toss): Encourages shorter, more
reliable paths with lower total
transmission cost.

2
f _1q ZlePs,d €amp * d]
ath_loss — +
path- PLpax
where PL,,,, 1S a normalization factor

representing the maximum acceptable path loss.
Thus, the overall optimization problem is:
Maximize F (P 4)V (s, d) pairs
Subject to: Eyes(i) > 0Vn; € N, Py

4. Proposed-Methodology

The GWL-FA Algorithm

The Grey Wolf-Levy Firefly Algorithm (GWL-
FA) is a sequential hybrid that uses GWO's
social hierarchy to guide the population and
FA's Lévy flights to introduce stochastic
exploration. The core idea is to treat each
candidate solution (a complete routing and
power configuration for the network) as a
"wolf" whose position is updated based on the
leadership hierarchy, but with a probability, it
undergoes a Firefly-inspired movement via
Lévy flight to explore new areas of the search
space as show in Figure 1 Flowchart of the
proposed GWL-FA.

Solution Representation (Encoding): Each
solution (an agent in the meta-heuristic
population) is represented as a vector X. Fora
network with m nodes, the vector has two
segments:
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e Routing Segment: A sequence of node
IDs representing a path for a pre-
selected source-destination pair. Paths
of variable length are handled using a
null-padding technique.

o Power Segment: A list ofmreal
values, each  representing  the
transmission power P, (i) for node n;.

Phases of the GWL-FA Algorithm:

Phase 1 Initialization: A population
of Npop wolves/fireflies is randomly
initialized. = Each  agent's  position Xj is

generated, creating random valid paths and
assigning random power levels within bounds.
The fitness F ()? ;) for each agent is calculated.
Phase 2 Main Loop (Iterative Update): For
each iteration t until the maximum
iteration Ty, 4, is reached, the following steps
are performed:

1. Fitness Evaluation & Hierarchy
Assignment: The population is sorted
based on fitness. The top three fittest
agents are designated as the alpha ()? @)
beta (X)B), and delta ()?5) wolves. The

rest are considered omega ()? w)-

2. GWO-based Position Update
(Exploitation): The position of each
omega wolf is updated based on the
leadership of alpha, beta, and delta.

Dy =IC, Xy —X 1,05 =1 C, X5 — X |, Dy

=|53')_()5—)_()|
Ry = R — Ay DSy = Ky — Ay - By B
=X>5—A>3'55
N X+ X, +X
Xawo(t+1)=f

where A =24 -7, —dandC =2 - 7,. The
vector d decreases linearly from 2 to 0 over
iterations, and 7,7, are random vectors in [0,
1].

3. FA-based Lévy Flight Update
(Exploration): With a
probability pp4 (e.g., 0.3), an omega
wolf abandons the GWO update and
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instead performs a Firefly movement.
For a wolfi, if there exists a fitter
wolf j (based on the sorted hierarchy),
it is attracted to j. The movement is
governed by:

Xea(t +1) = Xi(6) + Boe "0 (X;(0)
— X;(t)) + a - Levy(B)

where:

o fois the attractiveness atr =
0.

o yis the light absorption
coefficient.

o 1 is the Cartesian distance
between the positions
of i and j in the solution space.

o ais a randomization
parameter.

o Levy(p) isaLévyrandom step
drawn from the

distribution Levy(f) ~ u =
t=8,(1 < B < 3). This step is
calculated as [24]:
" Xo
Levy(B) = 0.01 x W,O’
I'(1+ B) X sin (nf/2)
(1 +B)/2) x B x 2(B-D/2
where 14,7, are  random numbers from a
standard normal distribution, and I'is the
Gamma function.
4. Elitism and Selection: The new

positions )_()GWO (t+1)and )?FA (t+

1) are evaluated. The population for
the next generation is formed by
selecting the fittest agents from the
combined pool of old and new
populations, ensuring elitism.

)1/15’

Phase 3
Extraction:

Solution
terminates

and
algorithm

Termination
The

after T,y iterations. The final )?a solution is
deployed as the optimal routing path and power
configuration for the network. This process is
invoked periodically or when significant
topology changes are detected.
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Initialize Population of Wolves/Fireflies

Evaluate Fitness F(X) for each agent

Identify Alpha, Beta, Delta Wolves

For each Omega Wolf

V (With prob. p_FA) V (With prob. 1-p_FA)
[FA-Lévy Update] [GWO Update]

Evaluate New Positions

Apply Elitism & Form New Population

NO |

v

Next [teration

Convergen
ce reached?

YES

-

Deploy Alpha's Solution

v

Stop

Figure 1: Flowchart of the proposed GWL-FA algorithm

5. Simulation Results and

Discussion
Simulation Setup: We implemented the
proposed GWL-FA algorithm and benchmarked

it against standard GWO, FA, and the
conventional EA-DSR protocol using the NS-3
simulator. The simulation parameters are
summarized in Table 2.

Table 2: Simulation Parameters

Parameter Value

Description

Simulator | NS-3.35

Discrete-event network simulator

Simulation Area | 500m x 500m

Fixed deployment area

Number of Nodes | 50, 100, 150, 200

Variable node density

ISSN: 2367-8895

Volume 11, 2026



K. Thamizhmaran

International Journal of Computers
http://www.iaras.org/iaras/journals/ijc

Mobility Model | Random Waypoint Speed: 1-5 m/s, Pause: 2s
Traffic Model | CBR (UDP) 10 sources, 512 bytes/packet, 4 pkts/s
Initial Energy | 100 Joules Uniform for all nodes
Eolec 50 nJ/bit Transceiver electronics energy
Eamp 10 pJ/bit/m? Amplifier energy (free space)
P, Range | 1 mW - 100 mW Adjustable transmission power
Path Loss Model | Friis Free space path loss

GWL-FA Population | 50

Number of agents

GWL-FA Iterations | 100 Maximum iterations
Dra 0.3 Probability of FA update
Bo,V, @ 1.0,1.0,0.2 FA parameters
Weights wy, w,,ws | 0.6,0.2,0.2 Fitness function weights

Each simulation scenario was run 20 times with
different random seeds, and the results were
averaged to ensure statistical significance.

Performance Metrics: We evaluated the
algorithms based on the following metrics:
1. Network Lifetime (s): Time until the

first node dies (FND).

2. Packet Delivery Ratio
(PDR): (Received Packets / Sent
Packets) * 100%.

3. Average End-to-End Delay

(ms): Average time for a packet to
traverse from source to destination.

4. Total Energy Consumption
(J): Cumulative energy consumed by
all nodes.

5. Standard Deviation
Energy: Measures
across the network.

of Residual
energy balance

6. Results and Analysis

Impact on Network Lifetime: Table 3 and
Figure 2 illustrates the network lifetime (FND)
for different node densities. GWL-FA
consistently outperforms all other algorithms
across all densities. The performance gap
widens as density increases. At 200 nodes,
GWL-FA achieves a lifetime of ~1450 seconds,
which is 28.5% higher than GWO (~1130s),
34.7% higher than FA (~1076s), and a
remarkable 52.1% higher than EA-DSR
(~953s). This superior performance is attributed
to the effective hybrid strategy: GWO's
mechanism efficiently exploits good solutions
(paths with high energy), while the FA's Lévy
flight component allows the algorithm to
"jump" out of local optima, discovering
configurations that better balance load and
conserve the energy of bottleneck nodes.
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Table 3: Network Lifetime (First Node
Dead) vs. Node Density

Node EA- FA GWO | GWL-
Density | DSR FA
50 1200s | 1350s | 1400s | 1550s
100 1100s | 1200s | 1250s | 1420s
150 1000s | 1100s | 1150s | 1380s
200 935s | 1076s | 1130s | 1450s

Network Lifetime (First Node Dead) vs. Node Density

1 150 200
(s) (s)

BMEA-DSR(S) MFA(S) MGWO(S) MGWL-FA(S

1800
1600
1400
1200

1000
800
600
400
200
0

50

Figure 2: Network Lifetime (First Node
Dead) vs. Node Density

00

Packet Delivery Ratio (PDR) and End-to-End
Delay: Table 4 and Figure 3 shows the PDR and
delay for the 150-node scenario. GWL-FA
maintains a PDR above 96%, which is
significantly better than the other methods. EA-
DSR suffers from a lower PDR due to its
inability to adapt to dynamic link qualities and
energy depletion. The hybrid approach of
GWL-FA finds stable, energy-aware paths,
reducing link breaks and packet drops. The end-
to-end delay for GWL-FA is also the lowest. By
optimizing transmission power and selecting
efficient paths, it reduces both transmission
time and queueing delays associated with
congested or poor-quality links.
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Table 4: PDR and Delay for 150-Node

Scenario
Algorithm Packet Average End-
Delivery to-End Delay
Ratio (%) (ms)
EA-DRS 88.5 45.2
FA 92.1 38.7
GWO 93.8 35.1
GWL-FA 96.4 315

Energy Efficiency and Balance: Table 5 and
Figure 4 shows the total energy consumption
over time for the 100-node scenario. GWL-FA
demonstrates the most gradual energy
consumption rate, leading to the longest
onsumption is evenly distributed across the
network, successfully preventing the formation
of energy hotspots. This is a direct consequence
of the node degree component (fgegree) in the

Table 5: Standard Deviation of Residual
Energy at FND (100-node scenario)

Algorithm Std. Dev. of Residual
Energy (J)
EA-DRS 18.5
FA 15.2
GWO 12.8
GWL-FA 9.1

Convergence Analysis: Figure 4 plots the
convergence characteristics of the meta-
heuristic algorithms for a single simulation run
(100 nodes). The GWO converges quickly but
plateaus  early, indicating  premature
convergence. The FA converges slower but
reaches a slightly better fitness than GWO due
to its exploration capability. The GWL-FA

7. Conclusion and Future Work

This paper presented a novel hybrid meta-
heuristic algorithm, GWL-FA, for maximizing
network lifetime in dense MANETs. By
formulating the problem as a multi-objective of

optimization and designing a hybrid that
capitalizes on the exploitation strength of GWO
and the global exploration prowess of Lévy-
flight-enhanced FA, we have demonstrated a
significant performance improvement.
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Figure 3: PDR and Delay for 150-Node
Scenario
PDR and Delay for 150-Node Scenario

80

60

40

20

0
GWO

EA-DRS FA GWL-FA

M Packet Delivery Ratio (%) Average End-to-End Delay (ms)

operational time. Furthermore, the standard
deviation of residual energy when the first node
dies is lowest for GWL-FA (see Table 4). A low
standard deviation indicates that energy ¢

fitness function, which discourages the overuse
of central nodes.

Standard Deviation of Residual Energy at FND

(100-node scenario) (J)
9.1

18.5
18
1% 152
14 12.8
12
10

8

6

4

2

0

FA Gwo GWL-FA

EA-DRS

Figure 4: Standard Deviation of Residual
Energy at FND (100-node scenario)
algorithm, however, starts with a rapid
convergence (inherited from GWQO) and then,
aided by the Lévy flights, makes significant
jumps in fitness even at later iterations,
ultimately converging to the highest fitness
value. This demonstrates the successful synergy

between the two algorithms.

Extensive simulations confirm that GWL-FA
substantially prolongs network lifetime,
improves delivery ratio, reduces delay, and
achieves superior energy balance compared to
state-of-the-art algorithms and protocols,
especially in high-density scenarios.

The promising results of this work open several
avenues for future research:

1. Multi-Objective Formalization with

Pareto Fronts: The current work uses

a weighted sum approach for the fitness

function. A more rigorous approach

would be to treat it as a true multi-
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objective problem using Pareto-based
algorithms like NSGA-II or MOEA/D
[33], allowing network administrators
to choose from a set of non-dominated
solutions based on specific application
needs.
2. Integration with Machine Learning:
a. Predictive Analytics: Integrate a lightweight
machine learning model (e.g., a Linear
Regression or TinyML model) to predict node
mobility and traffic patterns. This forecast can
be fed into the GWL-FA fitness function to
make more proactive and robust routing/power
decisions [34].

b. Meta-Heuristic Parameter Tuning: Use
Reinforcement Learning to dynamically adapt
the GWL-FA parameters (e.g., prq, @) during
the optimization process, creating a self-
adaptive algorithm that performs well under
varying network conditions [35].

¢. Quantum-Inspired Meta-Heuristics: With
the advent of quantum computing, exploring
Quantum-inspired GWO (QIGWO) or
Quantum-based FA could be a groundbreaking
step. These algorithms use quantum principles
like superposition and entanglement to
represent and evaluate a vast number of
solutions simultaneously, potentially offering
exponential speedups for solving the NP-hard
lifetime maximization problem.

D. Hardware-in-the-Loop Testing and Real-
World Deployment: While NS-3 simulations
are valuable, the next step is to validate the
algorithm's performance in more realistic
testbeds using platforms like Raspberry Pi or
dedicated sensor motes, dealing with real-world
radio irregularities and interference.

e. Security-Aware Lifetime
Maximization: Future work will incorporate
security metrics (e.g., trust levels, intrusion
detection confidence) into the fitness function.
This would ensure that the chosen paths are not
only energy-efficient but also secure against
malicious nodes, leading to the development of
robust and resilient MANETS.

By pursuing these directions, the research
community can continue to push the boundaries
of performance and intelligence in resource-
constrained wireless networks.
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