
Use of a Hash-Based Integrity Verification Framework for Secure Data

Transfer Between Database Tables

HASSAN BEDIAR HASHIM

Middle Technical University, Baghdad,
IRAQ

Abstract: Data integrity guarantee among transferred data between tables is also an essential problem in
modern database-reliant systems, especially in security-sensitive scenarios such as finance, healthcare,
and large-scale administrative applications. While cryptographic hash functions and message
authentication operations are well-known, their application in databases as part of a protocol that
ensures systematic data transfer with concurrency control and automatic recovery has not been
addressed satisfactorily. We proposed hash-based integrity verification parallel framework that
integrates the SHA-256 hashing and the HMAC-based authentication to guarantee secure and reliable
data movement between relational database tables. The protocol operates in four coordinated stages:
pre-transfer hash generation, authenticated data transfer using HMAC, post-transfer integrity
verification, and a process that can automate the recovery of such corrupted content. The model was
realized by Python and MySQL, and verified through a series of large-scale experiments that include
controlled link failure injections and adversarial modifications of the data. Results of experiments show
that the error rate of data transmission in the proposed approach drops to 0.1% from 4.5%, and with the
mandatory referential integrity guaranteed, it can reach up to a rate of close to 100%. Although the
history-based scheme may suffer a 25.5% higher transfer time because of cryptographic calculations,
such overhead is tolerable to cases constantly demanding high reliability and data security. Results
further manifest that the advocated schema offers a flexible integrity-preserving data transfer solution
applicable to relational databases.

Keywords: Data Integrity; SHA-256; HMAC; Secure Data Transfer; Database Security; Integrity
Verification
Received: June 16, 2025. Revised: September 29, 2025. Accepted: October 27, 2025. Published: January 26, 2026.

1. Introduction
The explosive proliferation of digital data has
changed the world in which originations must
compete, where data represents a fundamental
core asset for competitive advantage, systems
management and operational decisions making.
The rapid growth of big data analytics, cloud
computing infrastructures, Internet of Things
(IoT) applications and real-time information
systems gives relational database management
systems (RDBMSs), a strategic place in storing,
managing and processing structured data ([1],
[2]). In such environments, inter-table data-copy
operations are frequently executed for the
purposes of from- to -data-aggregation,
synchronization, auditing, reporting and

transactional work-flows between
heterogeneous applications and services [3].

Data integrity during transmission is extremely
critical in fields such as finance, healthcare,
government services, supply chain etc. There is
no tolerance for minor data corruption or
unauthorized modification which can have
critical impact such as inaccurate financial
transactions, violations in regulations, breach of
privacy protection in medical records and
flawed analytic results [4, 5]. Therefore,
maintaining the truthfulness (accuracy +
completeness) of data over its life time, is a
basic need in any authentic information system
especially when it's transferred between
database tables [6].

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 7 Volume 11, 2026

Conventional database mechanisms like
primary and foreign key constraints, transaction
handling, and referential integrity rules are
sufficiently robust to ensure logical consistency
of single database states. However, such
mechanisms are mainly to be used within the
context of atomic transactions and do not cover
end-to-end integrity when data is transported
between two or more tables, especially on other
applications, services/ distributed environments
[7]. Likewise, The communication-layer
security mechanisms of protocols such as
TCP/IP are concerned with reliability in the
delivery of packets and not semantically about
data integrity at the database or application layer
[8]. As a result data corruption or fraud which
happens outside of the existing methods can go
unseen.

Cryptographic solutions are commonly used to
solve security and integrity requirements in
communication and local storage. Hash
functions in general produce a fixed-length
summary of the original data or message
material: this is sometimes called a finger print,
hence it can be used for detecting errors in
digital data [9]. The secure hash functions from
the SHA family, e.g., SHA-256 are widely
adopted due to its collision resistance, preimage
resistance and computational efficiency [10].
However, simple hashing schemes are not
enough in an adversarial model, since a
dishonest party can manipulate both the data
and the hash value without being detected [11].

To address this issue, integrity and data origin
authentication are offered by MACs. HMAC:
Hash-based Message Authentication Code,
which is a mechanism to combine hash
functions with shared secret key so that only the
authorized entities can generate valid
authentication codes [12]. Several HMAC
constructions have been standardized and
become significantly popular in secure
communication protocols, digital signatures and
authentication systems [13]. Them adopt on for

data transfer workflows at the database level has
been relatively little explored, although it is
clear that very large writes to databases are a
real threat with such low-level compositions
[14].

Recent works have studied the problem of
maintaining data integrity in cloud databases,
distributed systems and blockchain based
storage systems [15, 16]. However, these
methods usually involve high computational
cost, complex architecture or reliance on extra
outside infrastructure support. A large number
of practical database applications, in sharp
contrast to the previous settings, also need
small, deployable solutions that can be easily
integrated into existing relational systems
without redesigning them on a great extent
[17]. This void characterizes the need for a
systematized and efficient method that
maintains the integrity of data transferred
between tables with reasonable levels or
performance overhead.

Another problem in the data transfer operation
occurs due to lack of automatic recovery
feature. In fact, in many of the current systems
where integrity checks are performed late
differences have been buried in records (mixed)
and afterwards (manual) effort has to be done
to search, track and correct the misinformation
[18]. In reality these procedures are time
consuming, it is not without mistakes and costly
particularly for big databases. Therefore, the
provision of automatic recovery methods
capable to promptly recognize breaches of
integrity and correct corrupted data are essential
in order to improve system dependability and
operational safety [19].

Motivated by these issues, there is a need to use
hashing based integrity checking mechanism for
secure data exchange between the RDB tables.
The system entails fingerprinting hashing using
SHA-256 and trusted source identifier based on
HMAC for integrity verification of transferred

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 8 Volume 11, 2026

data and proof that data came from an authentic
(known) source. An automatic error recovery
scheme is also proposed, which can detect
errors and retransmitted-corrupted data sections
automatically without human intervention. In
contrast, our approach focuses on practical
deployment and wants to minimize architectural
ambulancemen as well as quantitative
performance aspects in a relational database
system [20].

The main contributions of this study are as
follows. First, we provide a systematic way to
integrate cryptographic integrity verification in
the inter table data-transfer steps. Second, it
shows how the combination of SHA-256 and
HMAC can be used to counter accidental
corruption in random walkers as well as an
attack by a malicious adversary. Third, it
presents an automatic recovery approach which
increases the systems reliability and lowers
operational burden. Finally, it gives an
experimental evaluation with a fine-grained
measurement on the trade-off between
performance overhead and integrity assurance,
which offers practical guidance for real
implementation.

The rest of the paper is organized as follows. In
section 2, we examine related work on hashing
techniques and data verbatim integrity assurance
and database security approaches. Problem
statement and objectives are set out in Section
3. The proposed model and the research
methodology are described in section 4. The
experimental results and performance analysis
are shown in Section 5. Section 6 then presents
the results and interprets them with respect to
previous studies, while Section 7 contains the
conclusions and implications for further
research.

2. Literature Review

2.1 Hash Functions and Data Integrity

A hash function is an essential tool to provide
integrity by converting variable input length
datasets into fixed size line in form of a message
digest uniquely representing the original data
[9]. Useful in preventing accidental data
corruption; as a hash function checks for any
changes to the message or file where it was
created, by comparing its output length before
and after. At the time, both MD5 and SHA-1
were successfully attacked with collision and
preimage attacks, which proved to be quite
problematic for security-sensitive use-cases
[10].

The members of the family, especially SHA-
256 and SHA-512 have become de facto for
integrity check in all contemporary systems
because of their excellent immunity to tried
attacks coupled with popular programming
language and OS support [11]. SHA-based
hashing has been employed by various research
works in ensuring the data integrity of
databases, cloud storage systems and distributed
environments with highly accurate detectability
for unintentional data corruption [12, 13].
However, these solutions generally conduct
under a non-adversarial setting and do not
directly deal with the scenario where an
adversary could modify both the data and its
hash value intentionally.

2.2 Message Authentication Codes (MAC)

and HMAC

To overcome the constraints of single hash
function, MACs (Message Authentication
Codes) have been introduced that also ensure
integrity and authenticity to the data [14].
MACs are based on a secret key shared among
communicating parties, they will not convince
any other entities but the valid ones to produce
correct authentication codes. Among the

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 9 Volume 11, 2026

different MAC constructions, Hash-based
Message Authentication Codes (HMACs) are
especially interesting for their simplicity,
efficiency and provable security properties [15].
HMAC has been standardized and widely used
in secure communication protocols, including
TLS, IPsec, and API authentication mechanisms
[16].

Some researchers have also investigated the
application of HMAC for data transmission
security and integrity verification in distributed
systems, web services [17]. These researches
show that HMAC can efficiently stop illegal
data tamper.

3. Research Problem and Objectives

With the evolution of security features in
database systems, it remains a challenge to
secure end-to-end data integrity for inter-table
transfers. Neither traditional database
constraints and transactions make cryptographic
guarantees, nor standalone hash techniques are
resistant in adversarial settings. Even if HMAC
enhances integrity and authenticity, how it is
connected with automated recovery mechanisms
at the level of databases is not well-studied.

The contribution of this work is to provide a
practical integrity verification framework
including cryptographic hashing, identification
and automated recovery that achieve secure and
reliable inter-table data transfer with little
additional overhead on the transmission.

4. Proposed Framework and Methodology

The proposed model has four synchronized
stages:

1. Pre-transfer hash generation using SHA-
256

2. HMAC-based authenticated data transfer

3. Post-transfer integrity verification
4. Machine learning based automatic data

reconstruction with selective re-
transmission of corrupt records

The integrity error ratio is defined formally as:

E = (Number of Corrupted Records / Total
Number of Records) × 100%

We built this framework with Python and
MySQL, and directly integrated it to the process
of transferring data in database.

5. Evaluation Metrics
Metrics are: Error Rate (%), Transfer Time (%),
Referential Integrity (%). Extra metrics per
phase: Hashing Time, HMAC Computation
Time, Verification Time, Recovery Time.

6. Results

6.1 Overall Performance Metrics

Table I: Total Performance Indicators for the
Conventional and Proposed Frameworks
(10,000 Records with Simulative Errors).
Method Error

Rate
(%)

Transfer
Time (%)

Referential
Integrity
(%)

Conventional
Transfer

4.5 ±
0.3

100 98

Proposed
Framework

0.1 ±
0.05

125.5 100

 are mean ± SD over 10 runs
-test: t = 14.52, p < 0.01

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 10 Volume 11, 2026

6.2 Phase-wise Performance

Table 2: Phase-wise Performance Comparison

Phase Erro
r
Rat
e
(%)

Tim
e
(ms
)

Recor
ds
Verifie
d

Notes

Hashing 0.0
±
0.0

20 10,000 SHA-256
computation

HMAC 0.0
±
0.0

30 10,000 Authenticate
d transfer

Verificati
on

0.1
±
0.05

40 10,000 Integrity
check

Recovery 0.1
±
0.05

35 10 Retransmissi
on of
corrupted

6.3 Figures

Fig 1. Error Rate and Transfer Time
Comparison across Methods

Fig 2. Phase-wise Performance of Proposed
Framework

Analysis:
 Error rate ↓ >97%
 Transfer time ↑ 25% (statistically significant)
 Verification & recovery phases crucial for 100%

referential integrity

7. Discussion

 Precision of the pattern is effectively
enhanced without losing integrity.

 Secure tradeoff pays off because of
acceptable transfer time trade-off.

 Automated recovery does not rely on
human factor so it is more scalable and
robust.

 Light: In comparison to literatures [18–
20], our method provides the light
weight consistency check which is
deployable and all operations are
directly tied up with relation databases.

8. Conclusion and Future Work
We cover the hash-based integrity verification
that involves SHA-256, HMAC and automatic
recovery of the secure inter table transfers
suggest. The findings show that a strong
integrity guarantee is achieved with an
acceptable performance cost. Future work:

0

10

20

30

40

50

0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.05 0.1 ± 0.05

Hashing HMAC Verification Recovery

Error Rate vs. Transfer Time Comparison

across MethodsTime (ms)

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 11 Volume 11, 2026

 Generalize to distributed /cloud
databases

 Monitor transferred Live Streams in
Realtime

 Studying post-quantum cryptographic
primitive.

References

[1] Gilbert, C., & Gilbert, M. (2025). Exploring
secure hashing algorithms for data integrity
verification. SSRN.
[2] Anwar, M. R., Apriani, D., & Adianita, I. R.
(2021). Hash algorithm in verification of
certificate data integrity and security. ATT,
3(2), 181–188.
[3] Najm, H., Hassan, R., & Hoomod, H. K.
(2021). Data authentication for Web of Things
(WoT) using SHA 3 & Salsa20. Turkish Journal

of Computer and Mathematics Education,
12(10), 2541–2551.
[4] Tumusiime, J. (2023). A secure model for
student results verification using salted hash
functions.
[5] Ajao, L. A., et al. (2019). Crypto hash
algorithm-based blockchain technology in oil
and gas industry. J, 2(3), 300–325.
[6] Xu, D., Ren, N., & Zhu, C. (2023). Integrity
authentication based on blockchain and
perceptual hash for remote-sensing imagery.
Remote Sensing, 15(19), 4860.
[7] Mahanta, P., & Kumar, M. (2024).
CrowdStrike outage and cloud security.
Springer Nature Singapore.
[8] Paar, C., & Pelzl, J. (2009). Understanding
cryptography. Springer.
[9] Shettigar, P., Mendonca, T., &
Radhakrishnan, S. (2024). Network security and
cryptography. ETIT, Volume II.
[10] Gubala, H. B., Laasya, S., & Shyam, N. S.
D. (2024). Comparative analysis of Oracle and
MySQL databases.
[11] Python Software Foundation. (2024).
hashlib — Secure hashes and message digests.
[12] Vatti, N. B. (2024). Cyber security and
system vulnerabilities. IGI Global, pp. 149–158.
[13] Alagic, G., et al. (2025). Recommendations

for key-encapsulation mechanisms. NIST, 800-
227.
[14] Khetani, S. (2025). Data integrity and
security: Blockchain vs. traditional databases.

[15] Bayazitov, D., et al. (2024). Leveraging
AWS for cloud storage and AI integration.
Applied Mathematics, 18(6), 1235–1246.
[16] Biswas, R., et al. (2024). Data integrity and
security mechanisms in cloud-based relational
databases.
[17] Ramniklal, R. J. (2024). Database security
and integrity: Ensuring reliable and secure data
management. Mosaic of Ideas, 73.
[18] Mohammad, M. (2025). Resilient
microservices: A systematic review of recovery
patterns, strategies, and evaluation frameworks.
[19] Xu, Y., Li, H., & Zhang, M. (2019).
RESTORE: Retrospective Fault Localization
Enhancing Automated Program Repair.
[20] Kim, D., Park, J., & Lee, S. (2021). A
critical review on the evaluation of automated
program repair systems. Journal of Systems and

Software, 173, 110859.

Hassan Bediar Hashim
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 12 Volume 11, 2026

