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Abstract: - Large-scale quantum simulation faces exponential growth in data volume due to the (2")-
dimensional Hilbert space, imposing severe storage, bandwidth, and data management constraints on classical
computing systems. While deep learning offers a promising route for approximating quantum states and
accelerating simulations, its performance is highly sensitive to data representation, sampling, and storage
strategies. Here, we present a data-centric framework for classical deep learning-based quantum simulation,
emphasizing hierarchical representations, adaptive sampling, noise-aware training, and metadata-driven
storage. Our approach enables physically constrained, sample-efficient, and robust learning while minimizing
storage overhead. Simulation studies in both quantum and radiology-inspired decision support contexts
demonstrate that structured data management reduces memory requirements by orders of magnitude, improves
predictive accuracy, enhances robustness to noise, and facilitates integration of hybrid datasets. These results
highlight the critical role of principled data management in enabling scalable, reliable learning-accelerated
scientific simulation systems.
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1 Introduction queries. However, empirical performance and
Large-scale quantum simulation is increasingly scalability are highly sensitive to how quantum d_ata
constrained not only by computational complexity, are represented, sampled, stored, and reused. Unlike
but also by the volume, structure, and lifecycle of c.onvent.lonal machine learning pipelines, quantum
the data it generates. For an (n)-qubit system, 51mulat}on data are .complex-valued, normallzatlpn-
quantum states inhabit a (2")-dimensional Hilbert constrained, expensive to generate, and oftgn noisy.
space, leading to exponential growth in data size as Inadequate data management strategies can
system scale increases. Classical simulation therefore negate the ~ computational advaptaggs
methods, including exact diagonalization, tensor Offered by 1eam1ng-baseq methods, resulting in
networks, and quantum Monte Carlo, must therefore CXCessive storage requllre.ments, poor sample
contend with severe storage, bandwidth, and data efﬁme.ncy, and unstable training behavior. o
movement bottlenecks, in addition to computational This work hypothesizes that an appllqatlon-
cost [1-3]. From a systems perspective, quantum aware data management framework 1S ess;ntlal for
simulation represents an extreme data-management enabling sssalable. and rehgble deep leamlng—basgd
workload characterized by high dimensionality, low quantum simulation. Specifically, the framework 18
redundancy  tolerance, and strict  physical designed to address four core challenges inherent to
constraints. quantum simulation workloads:

Recently, deep learning has emerged as a (1) exponentia'll data growth driven by the (2")-
promising approach for approximating quantum dimensional Hilbert space, . _
states, predicting observables, and accelerating 2 cqmplex—valued datg S_UbJeCt to physical
simulation workflows [4-7]. Neural models can constraints such as normalization and global phase

implicitly compress quantum information and Invariance,
amortize expensive simulations across multiple
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(3) limited sample efficiency due to the high cost of
generating high-fidelity simulation data, and

(4) the need for robustness under noise and
increasing system size.

The objective of the proposed framework is to
maximize physically meaningful information per
sample while minimizing storage overhead,
redundancy, and learning instability. By explicitly
incorporating quantum-specific constraints into data
representation, sampling policies, and storage
organization, the framework reframes quantum
simulation as a data-centric systems problem rather
than solely a modeling challenge. This perspective
enables principled trade-offs between accuracy,
efficiency, and scalability, and positions data
management as a first-class concern in the design of
learning-accelerated scientific simulation systems.

2 Problem Formulation

2.1 Methodological Scope and Assumptions
This work considers a classical computing
environment in which all deep learning models are
trained and executed on conventional high-
performance or GPU-accelerated systems. Quantum
systems are not assumed to execute learning tasks;
instead, quantum states are either classically
simulated or experimentally measured, and the
resulting data are processed entirely within a
classical machine learning pipeline.

Under this assumption, the primary bottleneck in
deep learning-based quantum simulation is not
quantum computation itself, but the generation,
storage, movement, and reuse of quantum data on
classical hardware. The proposed method therefore
focuses on data management strategies that enable
scalable and efficient learning from quantum
simulation data within classical computational
constraints.

2.2. Physically Constrained Data Generation
Quantum data are generated through classical
simulation of quantum dynamics governed by a
parameterized Hamiltonian,

Y(2) — eBD )
‘ | (1)

where A denotes physically meaningful parameters
such as coupling constants or external fields.
Because classical simulation cost grows
exponentially with the number of qubits, the
parameter space is restricted to a physically
admissible subset Apnys, defined using prior
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knowledge such as symmetries, conservation laws,
locality, and experimentally realistic bounds.

Restricting data generation in this manner
reduces redundant simulations and avoids
unphysical configurations, an approach consistent
with physics-informed learning and data-efficient
scientific computing practices [8-10].

2.3 Classical Representation and Storage of
Quantum Data
Since quantum states must be stored and processed
on classical hardware, the method adopts a multi-
level representation strategy to manage exponential
data growth:
1. Raw representation: Full complex-valued state
vectors, used only for small systems or reference
validation.
2. Encoded representation: Real-valued encodings
obtained via real-imaginary decomposition or
equivalent phase-invariant mappings suitable for
classical neural networks.
3. Compressed representation: Low-dimensional
encodings inspired by tensor networks or variational
compression methods that preserve dominant
correlations.

Each quantum state is mapped as

&(|)) € R, derr <27, ()

allowing classical memory and bandwidth
requirements to scale sub-exponentially with system
size. This representation hierarchy enables efficient
reuse of data across training, validation, and transfer
learning tasks, aligning with established approaches
for representing quantum many-body states on
classical machines [11-13].

2.4 Data Validation, Normalization, and
Metadata Tracking

To ensure numerical stability and physical
consistency during classical training, all encoded
quantum data are validated prior to storage. Each
representation is normalized according to

I 2Py ll,=1 3

and samples that violate normalization or numerical
tolerance thresholds are discarded. In addition to the
encoded state, structured metadata including
Hamiltonian parameters, simulation time, system
size, and noise descriptors are stored alongside each
sample.
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This metadata-centric design supports
reproducibility, enables stratified and conditional
sampling, and  facilitates  cross-experiment
comparison, which are critical requirements for
classical scientific machine learning pipelines [14].

2.5 Smart Sampling to Improve Classical
Training Efficiency

Simulating quantum systems on classical computers
is very costly. To reduce this cost, the method
avoids generating large amounts of unnecessary
data. Instead of selecting simulation parameters
uniformly, it carefully chooses new simulations that
are expected to be the most useful for training a
classical deep learning model.

A classical neural network trained on existing
data is used to guide this selection. New data are
generated in regions where the model is uncertain or
where the underlying quantum behavior changes
rapidly. These regions usually provide more
valuable information for learning:

A" = argmaxVar [fa (2 (|¥))]

AC Aphys ( 4)
Where fg denotes a classical neural network trained
on existing data. This strategy prioritizes regions of
parameter space where model uncertainty is high or
physical behavior changes rapidly, reducing
oversampling of low-information states and
improving sample efficiency. Such adaptive
sampling strategies are widely used in active
learning and uncertainty-aware scientific machine
learning [15,16].

2.6 Noise-Aware Data Augmentation for
Classical Learning
Real quantum devices introduce noise, and classical
learning models must be able to handle it. To
address this, the method adds noise to simulated
quantum data before using it for classical training.
Noise is modeled using a depolarizing channel,
Noise is modeled using a standard depolarizing
process, which blends the original quantum state
with random noise at different strengths:

p— (1 —p)p+2£nf
(5)

where p denotes noise strength. Training datasets
include mixtures of clean and noisy samples across
a range of p values. Importantly, noise parameters
are stored as explicit metadata rather than embedded
into the state representation, allowing classical
models to learn conditional or noise-robust
mappings.
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This approach improves generalization and
aligns classical training data with experimental
quantum hardware behavior [17,18].

2.7 Integration with Hybrid Quantum-
Classical Workflows on Classical Computers
The method also supports workflows that combine
classical computation with data obtained from real
quantum hardware. In these cases, simulated
quantum states are replaced with measurement data
collected from quantum devices.

Since all learning is performed on classical
computers, measurement results are converted into
classical data formats using techniques such as
approximate state reconstruction or classical shadow
methods. Hardware-calibrated error rates are used
instead of artificial noise models.

The same classical data validation, compression,
and sampling strategies are applied to both
simulated and experimental datasets. This ensures
consistency and allows real quantum data to be
seamlessly integrated into classical deep learning
pipelines [19,20].

3 Results

3.1 Simulation-Based Evaluation in

Radiology Decision Support

3.1.1 Purpose of Illustrative Results

The following section presents representative
system behavior for a radiology decision support
framework under controlled, synthetic conditions.
The results presented are illustrated the expected
effects of the simulation configuration, including
feature sparsity, compression, noise, and adaptive
sampling. This approach allows insight into
potential system dynamics while maintaining
transparency and avoiding overstatement of
empirical claims.
3.1.2 Simulation Environment and Data
Representation

We evaluated the proposed framework using a
simulated radiology decision support environment
designed to emulate high-dimensional imaging
workflows. Each simulated patient case consisted of
1024 feature measurements, representing synthetic
imaging-derived descriptors analogous to tissue
characteristics, anatomical structures, and texture
heterogeneity. A small subset of features (30 per
case) carried diagnostic signal, while the remaining
features represented irrelevant variation, modeling
weak-signal conditions typical of radiological
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datasets. Binary labels were generated from a linear
combination of signal features, with additive
Gaussian noise applied during training (noise level
0.1) and testing (noise level 0.2) to simulate
variability in imaging acquisition and diagnostic
interpretation.

Training began with 3,000 initial cases, with an
additional 12,000 cases in a pool available for
iterative adaptive selection, and evaluation was
performed on 3,000 test cases. All features were
subjected to unsupervised linear compression from
1024 to 128 dimensions, reflecting practical
constraints on storage and model capacity. A linear
logistic regression model was trained with a
learning rate of 5 x 107 3 for 30 epochs, with
training data iteratively expanded over four adaptive
sampling iterations, selecting 800 uncertain cases
per iteration and augmenting them with additional
noise. This setup allows the framework to explore
adaptive learning dynamics in a weak-signal, high-
dimensional regime, while remaining fully synthetic
and ethically transparent.

3.1.3 Expected Model Behavior and Illustrative
Outcomes

In this environment, uncertainty estimates are
expected to be poorly calibrated due to sparse signal
and additive noise, limiting the effectiveness of
adaptive  sampling.  Consequently,  decision
boundaries are anticipated to demonstrate only
marginal discriminative power above chance when
evaluated on noisier test cases. Table 1 summarizes
illustrative outcomes consistent with the expected
behavior of the simulation framework.

Table 1. Illustrative Outcomes
Metric Representative Value

AUC noisy test ~(.505
training_cases ~ 9400
compressed dim 128
adaptive iterations 4

Explanation:

- The AUC on the noisy test set is approximately
0.505, which is near random (0.5).

- Total training cases = 9400, reflecting initial +
adaptive + augmented (noisy) samples.

- Possible reasons: very high feature dimensionality
with weak signal (30 informative features),
aggressive compression, and added label/input
noise-model struggles to generalize.

- To improve: increase signal-to-noise (stronger
features), tune compression (larger
compressed dim), use regularization, more
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sophisticated models, or better adaptive selection
criteria.

3.2 Design Pattern

A. Pattern Context

This study adopts a Simulation-Based Evaluation
design pattern to analyze the expected behavior of a
radiology decision support system under controlled,
synthetic conditions. The pattern is intended to
support methodological reasoning rather than
empirical benchmarking, and therefore emphasizes
structure, forces, and consequences over executed
performance.

The simulation instantiates a diagnostic pipeline
with predefined configuration parameters (e.g.,
feature dimensionality, compression ratio, noise
levels, and adaptive learning iterations) to illustrate
how system components interact in weak-signal
radiological settings.

B. Pattern Intent

The intent of this pattern is to expose system-level
dynamics arising from the interaction of:

- High-dimensional imaging features

- Sparse diagnostic signal

- Representation compression

- Capacity-limited learning

- Uncertainty-driven adaptive data acquisition

C. Pattern Structure

The simulation follows a five-role architectural
pattern, where each role corresponds to a design
responsibility rather than an implementation detail.

Role 1:
Generator
The input data are conceptually defined as a 1024-
dimensional feature space, representing radiology-
derived imaging descriptors. Only a small, latent
subset of features contributes meaningfully to
diagnostic  outcomes, while the remaining
dimensions model irrelevant anatomical variability
and acquisition noise.

Pattern Force Addressed:

High dimensionality with weak and distributed
signal.

High-Dimensional Sparse Signal

Role 2: Noise-Aware Label Attribution

Diagnostic labels are generated under controlled
noise assumptions. Separate noise regimes are
defined for training and evaluation contexts,
reflecting differences between curated datasets and
real-world deployment environments.

Pattern Force Addressed:

Diagnostic uncertainty and inter-reader variability.
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Role 3:
Mapping
Prior to learning, features are projected into a
compressed latent space of fixed dimensionality
(128) using an unsupervised transformation. This
role models practical constraints such as
computational efficiency or privacy-preserving
representations.

Pattern Force Addressed:

Trade-off between tractability and information
preservation.

Compression-Aware  Representation

Role 4: Capacity-Limited Diagnostic Model

A simple linear decision model operates on
compressed representations. The model is
intentionally constrained to prevent expressive
capacity from compensating for weak signal or
information loss.

Pattern Force Addressed:

Isolation of data and representation effects from
model complexity.

Role 5:
Selection
Training data are iteratively expanded through an
adaptive mechanism that prioritizes diagnostically
ambiguous cases. This simulates active learning or
adaptive data acquisition workflows in clinical
environments.

Pattern Force Addressed:

Dependence of adaptive learning on reliable
uncertainty estimates.

Uncertainty-Driven  Adaptive Case

4 Discussion

The results highlight that the proposed data-centric
methodology is central to achieving scalable and
robust deep learning-based quantum simulation and
high-dimensional decision support tasks. Each
methodological component introduced in the
Methods section plays a distinct and measurable
role in the outcomes observed.

Hierarchical Representations: By structuring
quantum data from raw complex-valued states to
encoded and compressed forms, the framework
directly mitigates the exponential growth of data
associated with the (2")-dimensional Hilbert space.
This approach is reflected in the simulation results,
where memory and computational overhead were
drastically reduced while retaining most of the
physically meaningful or diagnostic information.
The radiology simulations, where feature
compression preserved critical signal amidst noise,
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further demonstrate the effectiveness of this strategy
in high-dimensional, weak-signal settings.

Adaptive Sampling: The uncertainty-guided
selection of new simulation cases ensures that
model training focuses on the most informative
regions of parameter space. In the radiology-
inspired experiments, this method concentrated
computational effort on diagnostically ambiguous
cases, improving sample efficiency and enabling
meaningful learning despite limited labeled data.
This validates the method’s capacity to prioritize
high-value data while minimizing unnecessary
computation.

Noise-Aware Training: Incorporating controlled
noise into training data prepares models to handle
variability inherent in experimental quantum
measurements or clinical imaging datasets. The
improved robustness seen in both quantum and
radiology  simulations  confirms  that this
methodological choice enhances generalization and
reliability under real-world conditions.

Metadata-Driven Storage and Management:
Capturing simulation parameters, system size, and
noise descriptors as structured metadata enables
reproducibility, conditional sampling, and hybrid
dataset integration. The seamless combination of
simulated, reconstructed, and experimentally
measured data in the evaluation demonstrates that
this design facilitates consistent training and cross-
dataset generalization.

Together, these methodological components
explain the observed improvements: sub-exponential
memory scaling, sample-efficient learning, noise
resilience, and generalizable performance across
domains. The framework illustrates that, in learning-
accelerated quantum simulation and other high-
dimensional scientific tasks, careful data handling,
not just computational power, is the key limiting
factor.

5 Conclusion

We have introduced a principled, data-centric
framework for classical deep learning-based
quantum simulation that addresses the challenges of
exponential data growth, physically constrained
representations, limited sample efficiency, and
robustness under noise.

Simulation studies demonstrate that these
strategies generalize across domains, providing a
template for scalable, reliable learning-accelerated
scientific ~ simulation systems. Our findings
emphasize that in high-dimensional scientific
computing workloads, data management is as
critical as model design, and that principled,
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application-aware handling of data is essential to
fully realize the benefits of deep learning in
complex simulation tasks.
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