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Abstract: - This paper proposes an enhancement to the Contract-based Quantum Deep Q-Learning (QDQL) 
model through the integration of Aspect-Oriented Programming (AOP), a paradigm that enables the clean 
separation of contract enforcement logic from the core learning agent. In this approach, aspects act as modular 
interceptors that transparently apply contracts (i.e., domain rules or constraints) during the agent’s decision-
making process. To facilitate the structured and scalable integration of these enforcement mechanisms within the 
Quantum Deep Q-Learning architecture, the use of design patterns is introduced as a formal method for defining 
both the structural organization and behavioral interactions of system components. As a practical use case, the 
approach is applied to adaptive oncology treatment recommendation, where Aspect-Oriented Programming AOP 
provides a principled and modular means of enforcing critical clinical constraints, such as compliance with 
medical protocols, ethical standards, and patient-specific conditions, without tightly coupling them to the core 
learning algorithm. 
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1 Introduction 
In recent years, quantum computing has attracted 
growing interest within the scientific community, 
particularly among computer science researchers. 
Promising major advances in solving complex 
problems, such as factoring large numbers, 
optimizing, and simulating physical or medical 
systems, this new approach is disrupting traditional 
computing paradigms [1], [2], [3].  

Also, in problem solving using computers, the 
choice of programming paradigm is not neutral: it 
guides the way in which a problem is modeled, 
solved and optimized [4], [5]. Mastering several 
paradigms allows one to choose the approach most 
suited to the situation, which is essential for 
designing effective, robust, and maintainable 
solutions [6]. 

That is why the aspect-oriented programming 
(AOP) paradigm was introduced to address some of 
the limitations of the object-oriented programming 
(OOP) paradigm, particularly in the management of 
cross-cutting concerns [7], [8]. 

Our recent work on Contractual Quantum Deep 
Q-Learning [9] highlights the need for formal 
contracts between quantum and classical 
components. Contracts are integrated (i.e. explicit 

specifications / constraints) into the QDQL system, 
so that classical and quantum modules behave 
according to agreed rules (e.g., the action selection 
must satisfy certain safety or fairness constraints, 
etc.). 

The issue of contracts had already been addressed 
in [10] in the context of software agents. These 
contracts define operational, performance, or 
structural constraints that must hold for the system to 
behave correctly, safely, and efficiently.  

Following our previous study and recognizing 
that contracts intersect with various concerns, such as 
safety, ethics, performance, and resource constraints, 
across multiple stages of the agent lifecycle, Aspect-
Oriented Programming (AOP) emerges as an ideal 
approach for implementing a contract-based 
Quantum Deep Q-Learning (QDQL) system. By 
treating contracts as cross-cutting concerns, AOP 
enables their seamless integration into the QDQL 
agent, enhancing modularity, maintainability, and 
reusability. 

The paper proposes an enhancement to the 
Contract-based Quantum Deep Q-Learning (QDQL) 
model through the integration of Aspect-Oriented 
Programming (AOP), a paradigm that enables the 
clean separation of contract enforcement logic from 
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the core learning agent. In this approach, aspects act 
as modular interceptors that transparently apply 
contracts (i.e., domain rules or constraints) during the 
agent’s decision-making process. 

Aspect-Oriented Programming principles can 
normally be applied to the formal Quantum Deep Q-
Learning Contract by modularizing each contract 
specification into cross-cutting concerns (aspects) 
that can be weaved into the Quantum Deep Q-
Learning agent's runtime behavior. 

To support the systematic integration of contract 
enforcement mechanisms into the Quantum Deep Q-
Learning architecture, the use of design patterns is 
proposed as a means of formalizing the structural and 
behavioral composition of the system.  

Finally, we explore the application of these 
patterns in adaptive oncology treatment 
recommendation, as a concrete use case. In this 
clinical domain, AOP offers a principled and modular 
mechanism to enforce critical constraints, including 
adherence to medical protocols, ethical guidelines, 
and patient-specific factors, without entangling the 
core learning algorithm with domain-specific logic.  
 
2 Problem Formulation 
The development of hybrid quantum-classical 
systems, such as Quantum Deep Q-Learning 
(QDQL) agents, introduces architectural and 
methodological challenges related to system 
correctness, safety, and maintainability. This section 
identifies the core problems that arise when 
designing contract-based QDQL systems and 
justifies the need for Aspect-Oriented Programming 
(AOP) and design patterns as a means to address 
them. 
 
2.1 Contractual Requirements in QDQL 

Systems 
Quantum Deep Q-Learning agents integrate classical 
decision-making components with quantum modules 
that perform sampling, optimization, or value 
estimation [11], [12]. In such systems, formal 
contracts are required to regulate interactions 
between quantum and classical parts. These contracts 
can specify constraints on behavior (e.g., fairness in 
action selection), performance (e.g., bounded 
response times), or safety (e.g., avoiding dangerous 
states) [9]. 

However, encoding these contracts directly into 
the learning logic results in scattered and tangled 
code, violating principles of separation of concerns 
and increasing the difficulty of verifying and 
maintaining system correctness over time [1]. 
 

2.2 Cross-Cutting Nature of Contracts 
Contracts in QDQL systems are inherently cross-
cutting concerns: they span multiple phases of the 
agent lifecycle (e.g., policy learning, action selection, 
feedback interpretation) and influence multiple 
components (e.g., environment interface, classical 
controller, quantum evaluator) [13], [14].  
 
2.3 Limitations of Existing Integration 

Approaches 
Previous attempts to integrate contract logic into 
agent-based systems have relied on imperative or 
declarative annotations, rule-based engines, or 
middleware components [14].  

While these approaches offer some level of 
abstraction, they often lack: 

- Modularity: Contract logic is duplicated across 
multiple modules. 

- Reusability: There is no mechanism to package 
and reuse contract behaviors. 

- Transparency: Contract enforcement is not 
consistently visible in the system architecture. 

- Scalability: As the number of contracts 
increases, so does the complexity of integration. 

In the specific context of QDQL systems, where 
quantum computations introduce non-deterministic 
and probabilistic behavior, these limitations become 
even more pronounced [12], [1]. 
 
2.4 Opportunity for Aspect-Oriented 

Programming 
Aspect-Oriented Programming (AOP) is well-suited 
to addressing cross-cutting concerns by allowing 
developers to define aspects, modular units that 
encapsulate behavior affecting multiple classes, and 
to weave them into the system at well-defined join 
points [15], [16].  

AOP enables: 
- Clear separation of contract logic from core 

learning algorithms. 
- Non-invasive enforcement of constraints at 

runtime. 
- Greater modularity and reusability through 

reusable aspect modules. 
Given the diversity of contracts (e.g., 

performance, ethics, safety), their integration via 
AOP could provide a unified and extensible way to 
manage them in QDQL systems. 
 
2.5 Need for Design Patterns in AOP-Based 

QDQL 
While AOP provides the underlying mechanism for 
modular contract enforcement, there is currently no 
formalized methodology or design pattern for 
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applying AOP to quantum-classical learning 
architectures.  

Without such patterns, developers lack guidance 
on how to: 

- Structure aspects that correspond to different 
types of contracts. 

- Identify appropriate join points in QDQL agents. 
- Integrate AOP seamlessly with quantum 

computation workflows. 
Design patterns could fill this gap by providing 

reusable templates for structuring contract aspects, 
composing them with agent behavior, and ensuring 
system-wide consistency [13]. In particular, patterns 
are needed to formalize the interaction between 
quantum evaluators and classical policy components, 
where contract enforcement often resides. 

 
3 Hybrid Paradigm for Cross-Cutting 

Optimization 
To address the limitations identified in the previous 
section, we propose a hybrid architectural paradigm 
that combines Aspect-Oriented Programming (AOP) 
with Quantum Deep Q-Learning (QDQL) in a 
modular and contract-aware fashion. This paradigm 
supports cross-cutting optimization by treating 
contract specifications, such as safety, fairness, or 
performance constraints, as first-class modular 
concerns that can be defined, managed, and woven 
into the agent’s behavior at runtime. 
 
3.1 Formalization of Contracts 
Each contract is defined as a tuple: 

𝐶 =  〈𝑆, 𝐴, 𝑃, 𝐸〉   (1) 
Where: 
- S: The set of system states to which the contract 
applies; 
- A: The set of actions or behaviors the contract 
constrains or monitors; 
- P: The predicates or rules to be satisfied (e.g., 
safety, fairness, resource bounds); 
- E: The enforcement logic, including responses to 
violations (e.g., abort, modify, log). 
 
3.2 Modularizing Cross-Cutting Contracts as 

Aspects 
The modularization of contracts uses standard AOP 
constructs adapted to the QDQL environment: 
1° Pointcuts: Define the join points in the QDQL 
lifecycle where contract enforcement is needed.  

Typical join points include: 
- before(action_selection): Apply constraints 

before an action is chosen. 
- after(reward_update): Validate learning after 

reward propagation. 

- around(quantum_sampling): Wrap quantum 
subroutine execution to validate inputs/outputs. 
2°Advice: Defines the behavior to be executed at the 
matched pointcut: 

- before advice: Pre-conditions such as input 
validation, safety checks. 

- after advice: Logging, state verification, 
performance monitoring. 

- around advice: Policy enforcement, contract 
modification, fault recovery. 
3° Aspects: Encapsulate pointcuts and advice into a 
reusable, composable module representing a specific 
contract. 
 
3.3 Design Patterns for Contract Weaving 
Design patterns are reusable solutions to common 
design problems occurring within a given context in 
software development. Originating from the 
architectural principles established by Alexander et 
al. [17]. Design patterns provide a proven, abstracted 
vocabulary for modeling recurring software design 
challenges and enable the modularization of complex 
interactions between the agent, its learning 
components, and the contract aspects. 

In quantum-classical hybrid systems such as 
QDQL, design patterns can serve a critical role in 
managing the complexity arising from the integration 
of classical reinforcement learning pipelines with 
quantum circuit components [18]. 

Suggested patterns are presented in the following. 
 

a) Core QDQL Agent 
Pattern Name: QDQL Agent  

Intent: Generates actions based on learned policy 
Pseudo Code: 
 

// Core QDQL agent 
class QDQLAgent: 
function core_qdql(state): 
    # compute action 
    return chosen_action 
 
b) Aspect 

Pattern Name: Aspect  
Intent: Decorator/interceptor wrapping core agent, 
applies contracts dynamically 
Pseudo Code: 
 

// Aspect decorator: wraps core_qdql_function 
class Aspect decorator: 
function aspect(contract): 
    function decorator(core_qdql_function): 
        function wrapper(state): 
            action = core_qdql_function(patient_state) 
            contracted_action = contract(action, state) 
            return contracted_action 
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        return wrapper 
    return decorator 

 
c) Contract 

Pattern Name: Contract  
Intent: Pure functions encoding domain rules, 
returning modified or validated actions 
Pseudo Code: 
 

//Contract: receives action and state, returns modified 
action 

class Contract 
function contract(action, state): 
    if violates_rule(action, state): 
        return modify_action(action, state) 
    else: 

        return action 
 

d) Multiple Contracts Composed in Chains 

Pattern Name: Contract Chain Composition 
Intent: Allow multiple contracts to be applied 
sequentially to the QDQL agent's actions, enabling 
complex validations/modifications by composing 
simple contracts. 
Pseudo Code: 
 

// --- Contract Chain --- 

// Applies multiple contracts sequentially 
class ContractChain: 
    contracts  // list of contracts 
 
    method apply(action, state): 
        current_action = action 
        for contract in contracts: 
            modified_action = contract(current_action, 

state) 
            if modified_action is None: 
                // Contract rejects the action 
                return None 
            current_action = modified_action 
        return current_action 

 
e) Dynamic Contract Activation 

Pattern Name: Conditional Contract Activation 
Intent: Enable runtime decision on which contracts 
should be applied based on the environment, agent 
state, or external conditions.  
Pseudo Code: 
 

// --- Dynamic Contract Activation --- 
// Contracts have predicates to check if they are active 
class DynamicAspect: 
    contract_pool  // list of (predicate, contract) tuples 
 
    method intercept(action, state): 
        applicable_contracts = [] 
        for (predicate, contract) in contract_pool: 
            if predicate(state) == True: 

                applicable_contracts.append(contract) 
         
        if applicable_contracts is empty: 
            return action  // no contracts active 
         
        chain = ContractChain(applicable_contracts) 
        return chain.apply(action, state) 

 
f) Conflict Resolution Strategies 

Pattern Name: Contract Conflict Resolver 
Intent: When multiple contracts modify an action in 
conflicting ways (e.g., one increases dosage, another 
decreases), a resolution strategy reconciles 
differences to ensure consistency. 
Pseudo Code: 
 

// --- Conflict Resolution Strategies --- 

class PriorityContract: 
    contract 
    priority  // higher number = higher priority 
 
class ConflictResolver: 
    priority_contracts  // list of PriorityContract objects 

sorted by priority desc 
 
    method resolve(action, state): 
        for pc in priority_contracts: 
            modified_action = pc.contract(action, state) 
            if modified_action is not None: 
                return modified_action 
        return action 

 
// --- Aspect with Conflict Resolution --- 

class AspectWithConflictResolution: 
    priority_contracts  // list of PriorityContract objects 
 
    method intercept(action, state): 
        resolver = ConflictResolver(priority_contracts) 

        return resolver.resolve(action, state) 
 
4 Case Study: Adaptive Oncology 

Treatment Recommendation  
 

4.1 Context and Objective 
In clinical decision-making, selecting an optimal 
treatment often involves balancing multiple, 
potentially conflicting objectives, such as cost, 
toxicity, effectiveness, and patient quality of life 
(QoL).  

This case study demonstrates the application of 
runtime weaving using aspect-oriented programming 
(AOP) to dynamically inject multi-objective contract 
logic into a core treatment selection algorithm. The 
goal is to show how cross-cutting concerns, in this 
case, ethical and clinical policy constraints, can be 
applied selectively and transparently at runtime, 
enhancing adaptability and explainability. 
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4.2 Experimental Scenario 
Three synthetic patient profiles were defined in table 
1 to simulate common clinical scenarios. These 
patients vary in toxicity index, cancer stage, and 
available budget, affecting how the system chooses 
treatments based on runtime conditions. 
 
Table 1: Patient profiles 

Patient Age 
Toxicity 

Index 

Cancer 

Stage 

Budget 

(€) 

Previous 

Treatments 

P1 60 0.3 II € 7,00 None 

P2 70 0.7 III € 3,50 Chemotherapy 

P3 75 0.9 IV € 15,00 Radiotherapy, 
Immunotherapy 

 
4.3 System Overview 
The system is implemented in Python and is 
composed of four primary components: 
 
1° Core Decision Logic (core_qdql): A selector that 
chooses the treatment based on cost. In this case, it 
picks the most expensive treatment (just as a 
placeholder behavior). 
 
2° Aspect (multi_objective_aspect): A runtime-
injected decorator that overrides the core logic using 
a weighted multi-criteria scoring system. It evaluates 
each treatment based on: 

- Cost minimization 
- Toxicity minimization 
- Effectiveness maximization 
- QoL preservation 

 
3° Condition Function (high_toxicity_condition): 
Governs whether the aspect is applied. The contract 
aspect is only woven into the execution flow if the 
patient's toxicity index exceeds a configurable 
threshold. 
 
4° Weaving (@conditional_aspect): The conditional 
aspect decorator is used to perform runtime weaving, 
seamlessly directing the flow toward either the 
aspect-enhanced or original logic. 
 This creates a runtime-weaved decision function: 

- It checks the condition 
- If true → weaves the aspect (contract logic) 

into the call 
- If false → runs the core logic only 

 
4.4 Results 
The decision-making process for each patient is 
visualized through both textual and graphical 
outputs. When the aspect is applied, all treatments are 
scored in real-time, and the action with the highest 

aggregate score (expressed as a percentage) is 
selected. 
 
Patient 1: Age 60, Toxicity Index 0.3 
[Conditional Aspect] Condition NOT met, using core 
logic. 
→ Final recommended treatment:  surgery 
 
Patient 2: Age 70, Toxicity Index 0.7  
[Conditional Aspect] Condition met, applying contract 
aspect. 
 
[Aspect] Entering multi-objective contract aspect 
[Aspect] Core QDQL suggested initial action: 'surgery' 
[Contract] Evaluating actions with weights: {'cost': 0.25, 
'toxicity': 0.25, 'effectiveness': 0.4, 'quality_of_life': 0.1} 
  [Contract] Action 'chemotherapy ': Score = 36.5%  (Cost: 
6000, Toxicity: 1, Effectiveness: 0.6, QoL: 0.00) 
  [Contract] Action 'radiotherapy ': Score = 63.2%  (Cost: 
3000, Toxicity: 0.3, Effectiveness: 0.5, QoL: 0.70) 
  [Contract] Action 'immunotherapy': Score = 60.7%  
(Cost: 10000, Toxicity: 0.3, Effectiveness: 0.8, QoL: 0.70) 
  [Contract] Action 'surgery      ': Score = 36.0% (Cost: 
12000, Toxicity: 1, Effectiveness: 0.9, QoL: 0.00) 
 
[Aspect] Best action selected: 'radiotherapy' (63.2%) 
[Aspect] Exiting multi-objective contract aspect 
 
→ Final recommended treatment: radiotherapy 
 
Patient 3: Age 75, Toxicity Index 0.9 
[Conditional Aspect] Condition met, applying contract 
aspect. 
 
[Aspect] Entering multi-objective contract aspect 
[Aspect] Core QDQL suggested initial action: 'surgery' 
[Contract] Evaluating actions with weights: {'cost': 0.25, 
'toxicity': 0.25, 'effectiveness': 0.4, 'quality_of_life': 0.1} 
  [Contract] Action 'chemotherapy ': Score = 36.5%  (Cost: 
6000, Toxicity: 1, Effectiveness: 0.6, QoL: 0.00) 
  [Contract] Action 'radiotherapy ': Score = 63.2%  (Cost: 
3000, Toxicity: 0.3, Effectiveness: 0.5, QoL: 0.70) 
  [Contract] Action 'immunotherapy': Score = 60.7%  
(Cost: 10000, Toxicity: 0.3, Effectiveness: 0.8, QoL: 0.70) 
  [Contract] Action 'surgery      ': Score = 36.0%  (Cost: 
12000, Toxicity: 1, Effectiveness: 0.9, QoL: 0.00) 
 
[Aspect] Best action selected: 'radiotherapy' (63.2%) 
[Aspect] Exiting multi-objective contract aspect 
 
→ Final recommended treatment: radiotherapy 

 

4.5 Runtime Weaving Visualization 
The figure 1 is a diagram that clarifies the runtime 
composition of logic, showing where and how 
contracts are applied, improving transparency and 
traceability. 
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Fig. 1. Runtime weaving 

 

5 Conclusion 
This work demonstrates how Aspect-Oriented 
Programming (AOP) can be effectively employed to 
modularize and dynamically apply contract 
enforcement in the context of Quantum Deep Q-
Learning (QDQL).  

Through the integration of well-established 
design patterns, the architectural composition of the 
system becomes both systematic and extensible, 
supporting the principled insertion of aspects as 
modular decision influencers.  

The case study in adaptive oncology treatment 
recommendation validates this methodology, 
showing how critical clinical and ethical guidelines 
can be enforced transparently, depending on real-
time patient contexts. By decoupling domain-specific 
policies from the core learning agent, the proposed 
approach enables runtime weaving of constraints, 
such as cost-efficiency, toxicity management, and 
treatment effectiveness, without sacrificing the 
agent's generality or adaptability. 

More broadly, this approach offers a pathway to 
building explainable, auditable, and policy-
compliant intelligent systems, especially in high-
stakes domains like healthcare, where decision 
traceability and contract adherence are paramount. 
By enabling runtime adaptation of cross-cutting 
concerns, the fusion of AOP with QDQL lays the 
groundwork for more trustworthy and context-aware 
reinforcement learning applications. 
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