
Enhancing Quantum Deep Q-Learning with Aspect-Oriented

Programming: Cross-Cutting Optimization

EUSTACHE MUTEBA A.1, NIKOS E. MASTORAKIS2
English Language Faculty of Engineering

Technical University of Sofia & INTERBIT
Obelya 1, Block 118
1387, Sofia, Bulgaria

BULGARIA

Abstract: - This paper proposes an enhancement to the Contract-based Quantum Deep Q-Learning (QDQL)
model through the integration of Aspect-Oriented Programming (AOP), a paradigm that enables the clean
separation of contract enforcement logic from the core learning agent. In this approach, aspects act as modular
interceptors that transparently apply contracts (i.e., domain rules or constraints) during the agent’s decision-
making process. To facilitate the structured and scalable integration of these enforcement mechanisms within the
Quantum Deep Q-Learning architecture, the use of design patterns is introduced as a formal method for defining
both the structural organization and behavioral interactions of system components. As a practical use case, the
approach is applied to adaptive oncology treatment recommendation, where Aspect-Oriented Programming AOP
provides a principled and modular means of enforcing critical clinical constraints, such as compliance with
medical protocols, ethical standards, and patient-specific conditions, without tightly coupling them to the core
learning algorithm.

Key-Words: - Aspect-Oriented Programming, Cross-Cutting Concerns, design patterns Quantum Deep Q-
Learning, Hybrid Systems, Oncology.

Received: June 19, 2025. Revised: July 28, 2025. Accepted: August 19, 2025. Published: September 23, 2025.

1 Introduction
In recent years, quantum computing has attracted
growing interest within the scientific community,
particularly among computer science researchers.
Promising major advances in solving complex
problems, such as factoring large numbers,
optimizing, and simulating physical or medical
systems, this new approach is disrupting traditional
computing paradigms [1], [2], [3].

Also, in problem solving using computers, the
choice of programming paradigm is not neutral: it
guides the way in which a problem is modeled,
solved and optimized [4], [5]. Mastering several
paradigms allows one to choose the approach most
suited to the situation, which is essential for
designing effective, robust, and maintainable
solutions [6].

That is why the aspect-oriented programming
(AOP) paradigm was introduced to address some of
the limitations of the object-oriented programming
(OOP) paradigm, particularly in the management of
cross-cutting concerns [7], [8].

Our recent work on Contractual Quantum Deep
Q-Learning [9] highlights the need for formal
contracts between quantum and classical
components. Contracts are integrated (i.e. explicit

specifications / constraints) into the QDQL system,
so that classical and quantum modules behave
according to agreed rules (e.g., the action selection
must satisfy certain safety or fairness constraints,
etc.).

The issue of contracts had already been addressed
in [10] in the context of software agents. These
contracts define operational, performance, or
structural constraints that must hold for the system to
behave correctly, safely, and efficiently.

Following our previous study and recognizing
that contracts intersect with various concerns, such as
safety, ethics, performance, and resource constraints,
across multiple stages of the agent lifecycle, Aspect-
Oriented Programming (AOP) emerges as an ideal
approach for implementing a contract-based
Quantum Deep Q-Learning (QDQL) system. By
treating contracts as cross-cutting concerns, AOP
enables their seamless integration into the QDQL
agent, enhancing modularity, maintainability, and
reusability.

The paper proposes an enhancement to the
Contract-based Quantum Deep Q-Learning (QDQL)
model through the integration of Aspect-Oriented
Programming (AOP), a paradigm that enables the
clean separation of contract enforcement logic from

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 277 Volume 10, 2025

the core learning agent. In this approach, aspects act
as modular interceptors that transparently apply
contracts (i.e., domain rules or constraints) during the
agent’s decision-making process.

Aspect-Oriented Programming principles can
normally be applied to the formal Quantum Deep Q-
Learning Contract by modularizing each contract
specification into cross-cutting concerns (aspects)
that can be weaved into the Quantum Deep Q-
Learning agent's runtime behavior.

To support the systematic integration of contract
enforcement mechanisms into the Quantum Deep Q-
Learning architecture, the use of design patterns is
proposed as a means of formalizing the structural and
behavioral composition of the system.

Finally, we explore the application of these
patterns in adaptive oncology treatment
recommendation, as a concrete use case. In this
clinical domain, AOP offers a principled and modular
mechanism to enforce critical constraints, including
adherence to medical protocols, ethical guidelines,
and patient-specific factors, without entangling the
core learning algorithm with domain-specific logic.

2 Problem Formulation
The development of hybrid quantum-classical
systems, such as Quantum Deep Q-Learning
(QDQL) agents, introduces architectural and
methodological challenges related to system
correctness, safety, and maintainability. This section
identifies the core problems that arise when
designing contract-based QDQL systems and
justifies the need for Aspect-Oriented Programming
(AOP) and design patterns as a means to address
them.

2.1 Contractual Requirements in QDQL

Systems
Quantum Deep Q-Learning agents integrate classical
decision-making components with quantum modules
that perform sampling, optimization, or value
estimation [11], [12]. In such systems, formal
contracts are required to regulate interactions
between quantum and classical parts. These contracts
can specify constraints on behavior (e.g., fairness in
action selection), performance (e.g., bounded
response times), or safety (e.g., avoiding dangerous
states) [9].

However, encoding these contracts directly into
the learning logic results in scattered and tangled
code, violating principles of separation of concerns
and increasing the difficulty of verifying and
maintaining system correctness over time [1].

2.2 Cross-Cutting Nature of Contracts
Contracts in QDQL systems are inherently cross-
cutting concerns: they span multiple phases of the
agent lifecycle (e.g., policy learning, action selection,
feedback interpretation) and influence multiple
components (e.g., environment interface, classical
controller, quantum evaluator) [13], [14].

2.3 Limitations of Existing Integration

Approaches
Previous attempts to integrate contract logic into
agent-based systems have relied on imperative or
declarative annotations, rule-based engines, or
middleware components [14].

While these approaches offer some level of
abstraction, they often lack:

- Modularity: Contract logic is duplicated across
multiple modules.

- Reusability: There is no mechanism to package
and reuse contract behaviors.

- Transparency: Contract enforcement is not
consistently visible in the system architecture.

- Scalability: As the number of contracts
increases, so does the complexity of integration.

In the specific context of QDQL systems, where
quantum computations introduce non-deterministic
and probabilistic behavior, these limitations become
even more pronounced [12], [1].

2.4 Opportunity for Aspect-Oriented

Programming
Aspect-Oriented Programming (AOP) is well-suited
to addressing cross-cutting concerns by allowing
developers to define aspects, modular units that
encapsulate behavior affecting multiple classes, and
to weave them into the system at well-defined join
points [15], [16].

AOP enables:
- Clear separation of contract logic from core

learning algorithms.
- Non-invasive enforcement of constraints at

runtime.
- Greater modularity and reusability through

reusable aspect modules.
Given the diversity of contracts (e.g.,

performance, ethics, safety), their integration via
AOP could provide a unified and extensible way to
manage them in QDQL systems.

2.5 Need for Design Patterns in AOP-Based

QDQL
While AOP provides the underlying mechanism for
modular contract enforcement, there is currently no
formalized methodology or design pattern for

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 278 Volume 10, 2025

applying AOP to quantum-classical learning
architectures.

Without such patterns, developers lack guidance
on how to:

- Structure aspects that correspond to different
types of contracts.

- Identify appropriate join points in QDQL agents.
- Integrate AOP seamlessly with quantum

computation workflows.
Design patterns could fill this gap by providing

reusable templates for structuring contract aspects,
composing them with agent behavior, and ensuring
system-wide consistency [13]. In particular, patterns
are needed to formalize the interaction between
quantum evaluators and classical policy components,
where contract enforcement often resides.

3 Hybrid Paradigm for Cross-Cutting

Optimization
To address the limitations identified in the previous
section, we propose a hybrid architectural paradigm
that combines Aspect-Oriented Programming (AOP)
with Quantum Deep Q-Learning (QDQL) in a
modular and contract-aware fashion. This paradigm
supports cross-cutting optimization by treating
contract specifications, such as safety, fairness, or
performance constraints, as first-class modular
concerns that can be defined, managed, and woven
into the agent’s behavior at runtime.

3.1 Formalization of Contracts
Each contract is defined as a tuple:

𝐶 = 〈𝑆, 𝐴, 𝑃, 𝐸〉 (1)
Where:
- S: The set of system states to which the contract
applies;
- A: The set of actions or behaviors the contract
constrains or monitors;
- P: The predicates or rules to be satisfied (e.g.,
safety, fairness, resource bounds);
- E: The enforcement logic, including responses to
violations (e.g., abort, modify, log).

3.2 Modularizing Cross-Cutting Contracts as

Aspects
The modularization of contracts uses standard AOP
constructs adapted to the QDQL environment:
1° Pointcuts: Define the join points in the QDQL
lifecycle where contract enforcement is needed.

Typical join points include:
- before(action_selection): Apply constraints

before an action is chosen.
- after(reward_update): Validate learning after

reward propagation.

- around(quantum_sampling): Wrap quantum
subroutine execution to validate inputs/outputs.
2°Advice: Defines the behavior to be executed at the
matched pointcut:

- before advice: Pre-conditions such as input
validation, safety checks.

- after advice: Logging, state verification,
performance monitoring.

- around advice: Policy enforcement, contract
modification, fault recovery.
3° Aspects: Encapsulate pointcuts and advice into a
reusable, composable module representing a specific
contract.

3.3 Design Patterns for Contract Weaving
Design patterns are reusable solutions to common
design problems occurring within a given context in
software development. Originating from the
architectural principles established by Alexander et
al. [17]. Design patterns provide a proven, abstracted
vocabulary for modeling recurring software design
challenges and enable the modularization of complex
interactions between the agent, its learning
components, and the contract aspects.

In quantum-classical hybrid systems such as
QDQL, design patterns can serve a critical role in
managing the complexity arising from the integration
of classical reinforcement learning pipelines with
quantum circuit components [18].

Suggested patterns are presented in the following.

a) Core QDQL Agent
Pattern Name: QDQL Agent

Intent: Generates actions based on learned policy
Pseudo Code:

// Core QDQL agent
class QDQLAgent:
function core_qdql(state):
 # compute action
 return chosen_action

b) Aspect

Pattern Name: Aspect
Intent: Decorator/interceptor wrapping core agent,
applies contracts dynamically
Pseudo Code:

// Aspect decorator: wraps core_qdql_function
class Aspect decorator:
function aspect(contract):
 function decorator(core_qdql_function):
 function wrapper(state):
 action = core_qdql_function(patient_state)
 contracted_action = contract(action, state)
 return contracted_action

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 279 Volume 10, 2025

 return wrapper
 return decorator

c) Contract

Pattern Name: Contract
Intent: Pure functions encoding domain rules,
returning modified or validated actions
Pseudo Code:

//Contract: receives action and state, returns modified
action

class Contract
function contract(action, state):
 if violates_rule(action, state):
 return modify_action(action, state)
 else:

 return action

d) Multiple Contracts Composed in Chains

Pattern Name: Contract Chain Composition
Intent: Allow multiple contracts to be applied
sequentially to the QDQL agent's actions, enabling
complex validations/modifications by composing
simple contracts.
Pseudo Code:

// --- Contract Chain ---

// Applies multiple contracts sequentially
class ContractChain:
 contracts // list of contracts

 method apply(action, state):
 current_action = action
 for contract in contracts:
 modified_action = contract(current_action,

state)
 if modified_action is None:
 // Contract rejects the action
 return None
 current_action = modified_action
 return current_action

e) Dynamic Contract Activation

Pattern Name: Conditional Contract Activation
Intent: Enable runtime decision on which contracts
should be applied based on the environment, agent
state, or external conditions.
Pseudo Code:

// --- Dynamic Contract Activation ---
// Contracts have predicates to check if they are active
class DynamicAspect:
 contract_pool // list of (predicate, contract) tuples

 method intercept(action, state):
 applicable_contracts = []
 for (predicate, contract) in contract_pool:
 if predicate(state) == True:

 applicable_contracts.append(contract)

 if applicable_contracts is empty:
 return action // no contracts active

 chain = ContractChain(applicable_contracts)
 return chain.apply(action, state)

f) Conflict Resolution Strategies

Pattern Name: Contract Conflict Resolver
Intent: When multiple contracts modify an action in
conflicting ways (e.g., one increases dosage, another
decreases), a resolution strategy reconciles
differences to ensure consistency.
Pseudo Code:

// --- Conflict Resolution Strategies ---

class PriorityContract:
 contract
 priority // higher number = higher priority

class ConflictResolver:
 priority_contracts // list of PriorityContract objects

sorted by priority desc

 method resolve(action, state):
 for pc in priority_contracts:
 modified_action = pc.contract(action, state)
 if modified_action is not None:
 return modified_action
 return action

// --- Aspect with Conflict Resolution ---

class AspectWithConflictResolution:
 priority_contracts // list of PriorityContract objects

 method intercept(action, state):
 resolver = ConflictResolver(priority_contracts)

 return resolver.resolve(action, state)

4 Case Study: Adaptive Oncology

Treatment Recommendation

4.1 Context and Objective
In clinical decision-making, selecting an optimal
treatment often involves balancing multiple,
potentially conflicting objectives, such as cost,
toxicity, effectiveness, and patient quality of life
(QoL).

This case study demonstrates the application of
runtime weaving using aspect-oriented programming
(AOP) to dynamically inject multi-objective contract
logic into a core treatment selection algorithm. The
goal is to show how cross-cutting concerns, in this
case, ethical and clinical policy constraints, can be
applied selectively and transparently at runtime,
enhancing adaptability and explainability.

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 280 Volume 10, 2025

4.2 Experimental Scenario
Three synthetic patient profiles were defined in table
1 to simulate common clinical scenarios. These
patients vary in toxicity index, cancer stage, and
available budget, affecting how the system chooses
treatments based on runtime conditions.

Table 1: Patient profiles

Patient Age
Toxicity

Index

Cancer

Stage

Budget

(€)

Previous

Treatments

P1 60 0.3 II € 7,00 None

P2 70 0.7 III € 3,50 Chemotherapy

P3 75 0.9 IV € 15,00 Radiotherapy,
Immunotherapy

4.3 System Overview
The system is implemented in Python and is
composed of four primary components:

1° Core Decision Logic (core_qdql): A selector that
chooses the treatment based on cost. In this case, it
picks the most expensive treatment (just as a
placeholder behavior).

2° Aspect (multi_objective_aspect): A runtime-
injected decorator that overrides the core logic using
a weighted multi-criteria scoring system. It evaluates
each treatment based on:

- Cost minimization
- Toxicity minimization
- Effectiveness maximization
- QoL preservation

3° Condition Function (high_toxicity_condition):
Governs whether the aspect is applied. The contract
aspect is only woven into the execution flow if the
patient's toxicity index exceeds a configurable
threshold.

4° Weaving (@conditional_aspect): The conditional
aspect decorator is used to perform runtime weaving,
seamlessly directing the flow toward either the
aspect-enhanced or original logic.
 This creates a runtime-weaved decision function:

- It checks the condition
- If true → weaves the aspect (contract logic)

into the call
- If false → runs the core logic only

4.4 Results
The decision-making process for each patient is
visualized through both textual and graphical
outputs. When the aspect is applied, all treatments are
scored in real-time, and the action with the highest

aggregate score (expressed as a percentage) is
selected.

Patient 1: Age 60, Toxicity Index 0.3
[Conditional Aspect] Condition NOT met, using core
logic.
→ Final recommended treatment: surgery

Patient 2: Age 70, Toxicity Index 0.7
[Conditional Aspect] Condition met, applying contract
aspect.

[Aspect] Entering multi-objective contract aspect
[Aspect] Core QDQL suggested initial action: 'surgery'
[Contract] Evaluating actions with weights: {'cost': 0.25,
'toxicity': 0.25, 'effectiveness': 0.4, 'quality_of_life': 0.1}
 [Contract] Action 'chemotherapy ': Score = 36.5% (Cost:
6000, Toxicity: 1, Effectiveness: 0.6, QoL: 0.00)
 [Contract] Action 'radiotherapy ': Score = 63.2% (Cost:
3000, Toxicity: 0.3, Effectiveness: 0.5, QoL: 0.70)
 [Contract] Action 'immunotherapy': Score = 60.7%
(Cost: 10000, Toxicity: 0.3, Effectiveness: 0.8, QoL: 0.70)
 [Contract] Action 'surgery ': Score = 36.0% (Cost:
12000, Toxicity: 1, Effectiveness: 0.9, QoL: 0.00)

[Aspect] Best action selected: 'radiotherapy' (63.2%)
[Aspect] Exiting multi-objective contract aspect

→ Final recommended treatment: radiotherapy

Patient 3: Age 75, Toxicity Index 0.9
[Conditional Aspect] Condition met, applying contract
aspect.

[Aspect] Entering multi-objective contract aspect
[Aspect] Core QDQL suggested initial action: 'surgery'
[Contract] Evaluating actions with weights: {'cost': 0.25,
'toxicity': 0.25, 'effectiveness': 0.4, 'quality_of_life': 0.1}
 [Contract] Action 'chemotherapy ': Score = 36.5% (Cost:
6000, Toxicity: 1, Effectiveness: 0.6, QoL: 0.00)
 [Contract] Action 'radiotherapy ': Score = 63.2% (Cost:
3000, Toxicity: 0.3, Effectiveness: 0.5, QoL: 0.70)
 [Contract] Action 'immunotherapy': Score = 60.7%
(Cost: 10000, Toxicity: 0.3, Effectiveness: 0.8, QoL: 0.70)
 [Contract] Action 'surgery ': Score = 36.0% (Cost:
12000, Toxicity: 1, Effectiveness: 0.9, QoL: 0.00)

[Aspect] Best action selected: 'radiotherapy' (63.2%)
[Aspect] Exiting multi-objective contract aspect

→ Final recommended treatment: radiotherapy

4.5 Runtime Weaving Visualization
The figure 1 is a diagram that clarifies the runtime
composition of logic, showing where and how
contracts are applied, improving transparency and
traceability.

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 281 Volume 10, 2025

Fig. 1. Runtime weaving

5 Conclusion
This work demonstrates how Aspect-Oriented
Programming (AOP) can be effectively employed to
modularize and dynamically apply contract
enforcement in the context of Quantum Deep Q-
Learning (QDQL).

Through the integration of well-established
design patterns, the architectural composition of the
system becomes both systematic and extensible,
supporting the principled insertion of aspects as
modular decision influencers.

The case study in adaptive oncology treatment
recommendation validates this methodology,
showing how critical clinical and ethical guidelines
can be enforced transparently, depending on real-
time patient contexts. By decoupling domain-specific
policies from the core learning agent, the proposed
approach enables runtime weaving of constraints,
such as cost-efficiency, toxicity management, and
treatment effectiveness, without sacrificing the
agent's generality or adaptability.

More broadly, this approach offers a pathway to
building explainable, auditable, and policy-
compliant intelligent systems, especially in high-
stakes domains like healthcare, where decision
traceability and contract adherence are paramount.
By enabling runtime adaptation of cross-cutting
concerns, the fusion of AOP with QDQL lays the
groundwork for more trustworthy and context-aware
reinforcement learning applications.

References:

[1] Preskill J., Quantum computing in the NISQ era
and beyond, Quantum, Vol. 2, 2018, pp. 79.
Available online : https://doi.org/10.22331/q-
2018-08-06-79

[2] Arute, F., Arya, K., Babbush, R. et al., Quantum
supremacy using a programmable
superconducting processor, Nature 574, 2019,

pp. 505–510. Available online :
https://doi.org/10.1038/s41586-019-1666-5

[3] Montanaro A., Quantum algorithms: An
overview, npj Quantum Information, Vol. 2,
Article 15023, 2016. Available Online:
https://doi.org/10.1038/npjqi.2015.23

[4] Van Roy P., Haridi S., Concepts, Techniques,

and Models of Computer Programming,
Cambridge, MA: MIT Press, 2004.

[5] Ghezzi C., Jazayeri M., Mandrioli D.,
Fundamentals of Software Engineering, 2nd ed.
Upper Saddle River, NJ: Prentice Hall, 2002.

[6] Krishnamurthi S., Teaching programming
languages in a post-Linnaean age, J. Funct.

Program, Vol. 14, no. 4, 2004, pp. 387–402.
Available Online:
https://doi.org/10.1017/S0956796803004992

[7] Kiczales G. et al., Aspect-oriented
programming, in Proc. Europ. Conf. Object-

Oriented Program, (ECOOP), Jyväskylä,
Finland, Jun. 1997, pp. 220–242. Available
Online: https://doi.org/10.1007/BFb0053381

[8] Filman R. E., Friedman D. P., Aspect-oriented
programming is quantification and
obliviousness, Workshop on Advanced

Separation of Concerns, OOPSLA,
Minneapolis, MN, USA, 2000.

[9] Muteba A. E., Mastorakis N. E., Contractual
Quantum Deep Q-Learning, WSEAS

Transactions on Computers, Vol. 24, 2025, pp.
142-147.

[10] Muteba A. E., Modelling Software Agents for

Medical Decision Support System: Agent

Builder Framework, Le livre en papier, 2024.
[11] Nielsen M. A., Chuang I. L., Quantum

Computation and Quantum Information,
Cambridge University Press, 2010.

[12] Rebentrost P., Mohseni M., Lloyd S., Quantum
support vector machine for big data
classification, Phys. Rev. Lett., vol. 113, no. 13,
2014, pp. 130503.

[13] Gamma E., Helm R., Johnson R., Vlissides J.,
Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994.
[14] Jennings N., et al., Autonomous agents for

contract negotiation and management,
International Journal of Autonomous Agents

and Multi-Agent Systems, vol. 9, no. 3 , 2004,
pp. 235–263.

[15] Filman R. E. et al., Aspect-Oriented Software

Development, Addison-Wesley, 2005.
[16] Elrad T., Filman R. E., Baderv, Aspect-Oriented

Programming: Introduction, Communications of

the ACM, vol. 44, no. 10, 2001, pp. 29–32.

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 282 Volume 10, 2025

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1017/S0956796803004992
https://doi.org/10.1007/BFb0053381

[17] Alexander C., Ishikawa S., Silverstein M., A

Pattern Language: Towns, Buildings,

Construction, Oxford University Press, 1977.
[18] Khan M. A., Software design patterns and

architecture patterns - A study explored, in Proc.

IEEE Int. Conf. on Comput. Intell. and

Informatics (ICCI), 2022.

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)
The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of funding for research

presented in a scientific article or

scientific article itself
The article was produced without specific funding.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International , CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 283 Volume 10, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

