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Abstract: - A comparative analysis of aspects characteristic of both mathematical statistics methods and 

synergetic data integration methods is carried out. The results of the analysis are used to improve the efficiency 

of statistical estimates calculated from a small sample, as well as to develop estimates of the characteristics of 

objects and processes in synergetic data integration systems with a limited number of channels. 
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1 Introduction 
An important area of research in the field of 

synergetics [1,2] is the development of methods for 

data integration (merging). In complex synergetic 

systems, information about the same process (event) 

can be transmitted via several channels. The problem 

is to determine which channels transmit more reliable 

data and which transmit less reliable data. Then, two 

approaches can be taken. The first involves 

identifying one or more of the most informative 

(dominant) channels and cutting off the rest. This is 

done through the mechanism of “degrees of freedom 

reducers” [1]. This approach has the advantage of 

simplicity, but some useful nuances contained in the 

information of the cut-off channels are excluded from 

consideration and do not participate in the process of 

developing a cooperative solution. 

The second way, in which useful information 

is not lost, seems more attractive. It is advisable to 

abandon the concept of the dominant when 

synthesizing a synergetic data integration system 

and, instead of “degrees of freedom reducers,” 

include mechanisms that allow all data acquisition 

channels to participate in the decision-making 

process with weights corresponding to the degree of 

their informativeness in the current situation 

(“degrees of freedom discriminators”). As a result, all 

available information will be used appropriately. 

The synergetic principle of data integration 

has much in common with the ideas of mathematical 

statistics [3]. Thus, the synergetic concept of data 

integration (merging) is used for the most reliable 

assessment of the characteristics of processes 

(objects) based on the available set of data. And 

mathematical statistics studies the methods of the 

most reliable assessment of the moments of 

distribution of random variables based on the 

available set of sample elements. The commonality 

of the problems of both theories makes the task of 

studying the synergetic aspects of mathematical 

statistics relevant both for synergetics and for the 

development of statistical methods. 

The synergetic concept of data integration is 

actively used to extract maximum information from 

the available set of various data characterizing a 

process or an object in a wide variety of subject areas. 

The paper [4] describes a method for automatic 

classification of forest conditions based on aerospace 

survey materials based on the synergetic principle of 

data fusion. If the primary classification results in 

several different decisions regarding the class 

affiliation of an object, the overall decision is formed 

using a synergetic rule. First, the entire set of 

obtained decisions (a component of the synergetic 

system) is examined, after which the most 

informative (dominant) spectral channels of the 

sensor are determined, and the desired decision is 

made based on their readings. The paper [5] sets the 

task of combining signals from navigation fields of 

various physical natures (radio navigation fields such 

as GPS, geophysical fields, the field of stars and 

bodies of the Solar System, etc.) for the most reliable 

assessment of the current coordinates of the 
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spacecraft. The problem is solved by multi-criterial 

assessment of the suitability of each of the available 

fields using a nonlinear compromise scheme, after 

which the most informative (dominant) field in the 

current situation is selected. In the examples 

considered, the first way of data integration is used 

using the mechanism of "degrees of freedom 

reducers". 

The second way is presented by the 

following works. In the monograph [6], the task of 

combining the readings of devices with different 

accuracy classes is set. In this case, each of the 

devices makes its contribution to the resulting 

reading in accordance with its accuracy class. Here 

the task of combining the data of expert assessments 

is solved taking into account the degree of 

competence of experts in the issue under 

consideration. 

The method of expert assessment consists in 

the fact that to assess a certain quantitative 

characteristic, the postulates of not one, but several 

persons (experts) competent in the given issue are 

used. It is assumed that the "true" value of the 

quantitative characteristic unknown to us is within 

the range of expert assessments and the "generalized" 

collective opinion is more reliable. The unknown 

quantitative characteristic is considered as a random 

variable, the reflection of the distribution law of 

which is the expert's postulate. To establish the final 

assessment, the statements of all experts are studied 

in aggregate and processed as a kind of initial 

statistical material. The processing is carried out 

using the concepts of mathematical statistics. 

The paper [7] describes a method of signal 

integration for bistatic radiolocation of small celestial 

bodies. To improve the accuracy of measurements 

when studying the motion parameters of small 

celestial bodies, a bistatic configuration of radar 

systems is used. Information from each of the 

receiving antennas, spaced at significant distances, is 

processed and compared with each other so that the 

resulting signal is the most reliable. In the examples 

given, the mechanism of "degrees of freedom 

discriminators" is used for data integration, and the 

data from the information transmission channels is 

considered as the initial statistical material. 

Of particular interest is the case when the 

number of channels for obtaining the integrated data 

is limited, which corresponds to the case of a small 

sample in problems of mathematical statistics [8,9]. 

Since considerable experience has been accumulated 

in solving such problems, we will conduct further 

research in terms of mathematical statistics. 

Estimates of the parameters of the 

probability distribution of a random variable are 

obtained based on the processing of statistical 

material, which is a set of experimental values of the 

random variable under study. The greater the amount 

of experimental data, the closer the population under 

consideration is to the general population (including 

all possible realizations of the random variable) and 

the more accurately the distribution parameters can 

be determined. 

When solving problems of data integration, 

the researcher always has only limited statistical 

material at his disposal (a sample from the general 

population), and it is necessary to estimate the 

distribution parameters with the greatest possible 

accuracy. This is explained by the fact that obtaining 

each new element of the sample is usually a complex 

process associated with significant technical or 

economic difficulties. Computational difficulties 

play a less significant role. In such cases, O.K. 

Antonov said [10] that saving on calculations that 

evaluate huge economic events is the same as saving 

on aiming when shooting. 

Therefore, the problem arises: to the 

maximum extent use information about the statistical 

properties of the random variable under study and 

obtain calculation algorithms for calculating refined 

estimates of distribution parameters based on 

statistical material of limited volume. Since the 

results of this study can be applied not only to 

increase the information content of data acquisition 

channels in complex synergetic systems, but also in 

other cases, it is advisable to formulate and solve the 

problem in general terms of mathematical statistics. 

 

2 Problem Formulation 

Let us consider a continuous real random 

variable X  whose probability distribution density 

)( xf  is known up to an unknown parameter . A 

set of n independent realizations of the random 

variable X  is given: 

).,...,,( 21
)(

n
n xxxxx                      (1)                                                                      

(This is how the set of data to be integrated, 

obtained from n channels, is interpreted). 
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The problem is set: based on the results of a 

random sample (1), determine the best estimate *  

in a certain sense of the unknown parameter   of the 

distribution of a random variable X . 

For example, if a random variable X  is 

normally distributed with a known dispersion    
2 , 

then 

]
2

)(
exp[

2

1
)()(

2

2




xm
mxfxf x

x


                                                                  

(2) 

and the parameter to be estimated is the 

mathematical expectation: xm  . 

As is known [11], the quality of statistical 

estimates is characterized by the following main 

properties:  

1) consistency (convergence in probability of the 

estimate to the true value of the parameter);  

2) unbiasedness (absence of systematic error in the 

estimate);  

3) efficiency (minimum dispersion of the estimate). 

If the researcher has only the information 

contained in the above statement of the problem, then 

the maximum likelihood method proposed by R. 

Fisher [3] is used to determine the best (consistent, 

unbiased and effective) estimates. Then the estimate 

of the mathematical expectation of a normally 

distributed random variable has the form 





n

i

ic x
n

X

1

* .
1

                       (3)                                                                                          

Often, for small sample sizes, maximum 

likelihood estimates of type (3) do not provide 

satisfactory accuracy [8]. This forces the 

development of more effective estimation procedures 

in specific applications [3,8,12,13]. All of them, in 

one way or another, involve the use of additional 

information about the statistical properties of the 

random variable being studied. 

 

 

 

3 Problem Solution 

 One of the most effective means of increasing the 

efficiency of statistical evaluation is the Bayesian 

approach [3]. It consists of the fact that the parameter 

 to be estimated is considered as the realized value 

of the random variable . The researcher expresses 

all the preliminary information available to him 

(before the experiments) in the form of an a priori 

distribution of the variable , characterized by the 

probability distribution density )(af  . This 

function is called the a priori density and is 

considered known before the analysis of the data 

obtained experimentally. Bayes' theorem combines 

the a priori distribution and observational data to 

form an a posteriori distribution  )( xf  . In terms of 

the probability distribution densities for the random 

variables  and X, Bayes' theorem takes the form [3]: 

 

,
)(

)()(
)(

xf

fxf
xf a 

                      (4)                                                                                   

where the marginal distribution )(xf  is 

expressed by the formula 

    .)(




  dfxfxf a  

The physical meaning of Bayes' theorem in 

the form (4) is that if )(af  is the probability 

density function assigned to the parameter  before 

conducting the experiments, then )( xf   is the 

density function that should be assigned to  after 

obtaining the data. In terms of the synergetic theory 

of data integration, this means using the mechanism 

of "degrees of freedom discriminators". Statistical 

estimates calculated on the basis of the posterior 

distribution are of better quality than maximum 

likelihood estimates, since they use additional 

information about the unknown parameter  in the 

form of the prior distribution )(af . 

The most delicate point in Bayesian 

parameter estimation is the assignment of the prior 

density function. It must be adequate to the available 

preliminary information. On the one hand, in no case 

should one introduce information that is not present 
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in the prior data. Therefore, one selects )(af  based 

on the requirement that it have the maximum possible 

entropy (in the Shannon sense [14]) under the given 

conditions in the form of specific prior data 

considered as constraints [8]. On the other hand, 

neglecting any objective prior information leads to 

the selection of a less informative prior density, 

which makes the statistical estimate less effective. 

For example, let us consider the case of 

normal distribution of a random variable X with an 

unknown mathematical expectation xm  and a known 

variance 
2 , as presented by formula (2). It is 

known [8] that an unbiased estimate of the 

mathematical expectation, considered as a random 

variable, is also distributed according to a normal law 

with variance n/2  and with the same 

mathematical expectation xm . Since the parameter 

xm  is subject to estimation and is unknown, then the 

usual Bayesian practice prohibits choosing a normal 

distribution law as )()( xaa mff   . Thus, 

objective a priori information about the type of 

distribution law of the estimated parameter is lost, 

which negatively affects the effectiveness of the 

statistical estimate. 

It is proposed in such cases to introduce an a 

priori density with the parameter '  , considered as 

an unknown constant: )'( af  . For our example 

with a normal distribution 

.
)(2

)(
exp

2)(

1
)(

2

2'

2
'













 


n

m

n
mf x

x





  

Such a priori density does not introduce 

information that is not present in the a priori data, and 

at the same time allows the use of objective a priori 

information about the type of distribution law (in our 

case, normal) of the estimated parameter. 

Let us find an algorithm for calculating a 

refined estimate of the parameter . For each random 

sample x , the sought computational algorithm ( x

) will give an estimate *  of the unknown parameter 

. If we use the value *  while the true value is , 

then an error occurs, the cost of which can be 

expressed as a loss function )*,( c . The choice of 

the loss function is not determined by theory, is 

subjective in nature and expresses the attitude of the 

researcher to the magnitude of the discrepancy 

between the decision *  made and the true value  of 

the estimated parameter  [13]. The loss function 

must be non-decreasing. 

Since the value of  is unknown, it is 

impossible to calculate the true loss function. 

However, using a priori information in the form of 

the a priori density )'( af  we proposed, for all 

possible realizations of the observation vector x  

with known statistics )( xf , we can introduce the 

risk function 

  




 ,)(),()],([)( '***  dxdfxfccMR a      

                                          (5) 

which is defined as the mathematical expectation of 

the loss function. Using Bayes' theorem in form (4), 

we write expression (5) as 

    




 .),()( **  dxdxfxfcR  

We obtain the optimal estimate *  by 

minimizing the risk function: 

*),(minarg
*

* 


R  

where 

  








 .])(),([min)(min **

**
dxxfdxfcR 



 

For a fixed sample 
)(n

xx  , only the 

expression in square brackets, called the conditional 

Bayesian risk *)(r , depends on the parameter *  

[12]. Therefore, minimizing the risk function *)(R

is completely equivalent to minimizing the 

conditional Bayesian risk *)(r  for a given sample 

 nxx  : 
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 

    .),(min

)(min)(min

*

**

*

**














n

n

xx

xx

dxfc

rR









   (6) 

Further derivation requires specification of 

the loss function. In estimation practice, the quadratic 

function is usually used 

.)(),( 2**  c                    (7)                                                                                            

Using the necessary condition for the minimum of the 

function 

0*/*)(  r  

we express (6) taking into account (7) as 

  .0)(2 )(
* 




 nxx

dxf   

Let's transform this expression into the form 

 .)()(*
 









 nxx
dxfdxf   

Considering that according to the property of 

probability density 

,1)( 




 dxf  

we write it down finally 

,)( )(
*







 nxx
dxf        (8)                                                                                                

i.e., with a quadratic loss function, the optimal 

estimate *  is the a posteriori mathematical 

expectation of the parameter , calculated based on a 

given vector of observations. 

We will use the definition of the posterior 

density in the form (4) and transform expression (8) 

to the form 

 
  .

)(

)()(

'

'

*
nxx

a

a

dfxf

dfxf


















             (9)                                                                      

Since the desired estimate 

),...,,(** n21 xxx   must be calculated based on 

a given vector of observations, we must move in 

expression (9) from integrals to summation over the 

elements of a given sample and replace the unknown 

constants with their estimates: 

.

)()(

)()(

1

**

1

**

*








n

i

iai

n

i

iaii

xfxf

xfxfx





                (10)                                                                             

Formula (10) expresses the dependence 

*);,...,,(* 21  nxxx . 

As is known [15], an equation in this form 

can be solved by an iterative method. The iterative 

procedure is organized in accordance with the 

recurrent formula 

],,1[]),1[*;,...,,(][* 21 Lllxxxl n  

 

  and the iterative process ends when the condition is 

met 

  ]1[*][* LL , 

where l is the number of the current iteration;   is 

the specified accuracy of the estimate calculation *
. If it is necessary to analyze convergence issues, then 

one can apply the well-known theorem [15], 

according to which for the convergence of the 

iterative process it is sufficient that the inequality is 

satisfied on the considered interval of estimate *  

refinement 
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1*/*);,...,,( 21  dxxxd n . 

E x a m p l e . Let us consider the problem of 

refined statistical estimation of the mathematical 

expectation of a random variable X distributed 

according to the normal law with the distribution 

density )()( xmxfxf   given by formula (2), 

based on the results of a random sample (1), if the 

variance 
2  is known. The a priori information is 

that the estimate of the mathematical expectation 

cX  is also distributed according to the normal law 

with a known variance 

n/22
1                                   (11)                                                                                                        

and with the same unknown mathematical 

expectation xm : 

].
2

)(
exp[

2

1

)()(

2

1

2

1

'





xc

cxaa

mX

Xmff






                (12) 

To solve the problem, we substitute expressions (2) 

and (12) into formula (10) and obtain 

,
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


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



 

            from which the effect of reducing the variance of the 

posterior distribution is visible, which indicates the 

effectiveness of the proposed estimation procedure. 

Taking into account (11), we obtain 

 .
2

1

2

)(

22
1

2

2
1

2


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

 n
 

Thus, an iterative procedure must be 

organized to calculate the estimate cX . 

 

   

   
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x
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


                                                                     

(13) 

at that, as a first approximation it is advisable to adopt 

the maximum likelihood estimate (3): 

   



n

i

ic x
n

lX

1

.
1

 

For quantitative verification of the proposed 

iterative algorithms, tables of normally distributed 

random numbers [16] with known distribution 

parameters were used. The calculation results are 

given in [6]. 

The results show that the confidence interval 

corresponding to the refined estimate is smaller than 

the confidence interval of the maximum likelihood 

estimate. The greatest gain in efficiency is obtained 

with small sample sizes. This confirms the idea that 

with an increase in the volume of measurements, the 

relative contribution of a priori information in 

obtaining estimates becomes smaller and smaller, 

and the Bayesian estimate and the maximum 

likelihood estimate asymptotically coincide [17]. 

Therefore, it is advisable to calculate the refined 

estimate mainly with small sample sizes. 

An important property of the a priori density 

is that it should not be its own density, i.e. its integral 

does not necessarily have to be equal to one [3]. In a 

number of cases [12], attempts to use pseudo-

Bayesian estimates are considered entirely justified, 

in the construction of which some other density is 

introduced instead of the missing a priori probability 

density of the estimated parameter. Of particular 

interest is the possibility of using any of the so-called 

potential functions as a priori density [18], a special 

case of which is the normal distribution law (2). 

Other examples include the functions 

,
)(1

,
)(

,
23221

xX
f

xX
f

xX
f

ccc 











     

                                                   (14) 
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where , , ,   are constants. The potential function 

is characterized by the fact that it monotonically 

decreases with distance from the value cX  , i.e. it is 

symmetrically even with respect to cX  . If it is only 

known that the estimated parameter is distributed 

symmetrically in the general population, then it is 

advisable to obtain a more accurate estimate cX  by 

choosing a sufficiently simple potential function for 

the a priori density. 

Sometimes, to reduce the amount of calculations, it is 

even convenient to deliberately replace a known (for 

example, normal) distribution law with another, 

simpler potential function. Thus, if a random variable 

is distributed according to a uniform law, then it is 

known that the estimate of its mean value obeys the 

normal distribution law. However, having chosen the 

first of the potential functions (14) as the a priori 

density, we arrive at the following simple iterative 

algorithm for calculating the estimate cX : 

 

 

       



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.

1
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1,,1;
1

1

,

1

1
]1[



     

                                                           (15) 

Algorithm (15) in compact form represents a method 

for processing expert assessment data, described in 

detail in [6]. 

 The general expression for the refined 

estimate (10) is fully consistent with Gauss's idea 

[12] that the most probable value of the estimated 

parameter is the one that minimizes the sum of the 

squares of the differences between the actually 

observed and calculated values, multiplied by the 

weighting coefficient ik , reflecting the relative 

confidence in the observations: 

 



n

i

ii xk

1

2** .)(minarg
*




      (16)                                                                                         

In [19,20] it is shown that expression (10) is indeed 

obtained from (16) if the posterior probability density 

function (“degrees of freedom discriminator”) is 

introduced as a measure of relative confidence in 

observations. 

 Thus, the proposed method provides for an 

individual approach to each realization of a random 

variable (weighting in accordance with the a 

posteriori probability of its occurrence), which 

allows [8] to eliminate information loss when 

calculating the desired estimates for a small sample. 

It is important to note that the most reliable 

assessment is developed through the organization of 

an iterative process in which the elements of the 

sample interact with each other at each iteration. 

Similarly, synergetics provides for a process 

characterized by self-management and self-

organization in accordance with the set goal. Here, 

complex processes develop through the collective 

interaction of components. Cooperation of 

components allows the use of reserve capabilities of 

the system and significantly increases the degree of 

emergence (system effect). 

 

4 Conclusion 

A comparative analysis of aspects characteristic of 

both mathematical statistics methods and synergetic 

data integration methods was conducted. The results 

of the analysis are used to improve the efficiency of 

statistical estimates calculated from a small sample, 

as well as to develop the most reliable estimates of 

the characteristics of objects and processes in 

synergetic data integration systems with a limited 

number of channels. 

In the future, it is planned to study the 

possibility of using synergetic weighting in the least 

squares method to increase the convergence rate of 

the dual programming method described in [21]. It is 

planned to conduct a study of the possibility of using 

synergetic methods in various subject areas. 
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