
Theorems and Conjectures with Python

ALESSIO DRIVET
GeoGebra Institute of Turin

ITALY

Abstract: - This study investigates the integration of computational methods—specifically the Python
programming language—into the exploration and empirical testing of mathematical theorems and conjectures.
The distinction between formally proven theorems and conjectures, which remain unproven but are widely
believed to be true, serves as the conceptual framework. Three case studies are presented: a numerical verification
of Pick’s Theorem; an algorithmic test of Goldbach’s Conjecture up to a user-specified bound; and a novel, AI-
generated conjecture concerning “prime jump permutations,” examined through exhaustive enumeration. While
emphasizing the inherent limitations of computational experimentation in place of formal proof, this work also
highlights the value of such approaches in supporting mathematical intuition, facilitating pattern recognition, and
stimulating conjecture formulation. The results underscore the growing role of programming and artificial
intelligence in contemporary mathematical inquiry.

Key-Words: - Theorems, Conjectures, Python, Computational Mathematics

Received: May 8, 2024. Revised: January 19, 2025. Accepted: March 21, 2025. Published: May 13, 2025.

1 Introduction

Two fundamental concepts that characterize

mathematics are theorems and conjectures. Although
they are often associated concepts, they differ in the
degree of certainty and how they are validated.

A theorem is a mathematical statement confirmed
through rigorous logical reasoning. In other words, a
theorem is a proposition that starting from already
known principles (axioms, definitions, previous
theorems), is demonstrated to be true. Some famous
examples of theorems discussed in school are the
Pythagorean theorem on right-angled triangles and
Euclid's theorem on the infinity of prime numbers.
However, some theorems are rarely stated but
extremely important, such as Jordan's topological
theorem, Pick's geometric theorem, or Bayes'
probabilistic theorem.

Conversely, a conjecture is a statement believed
to be true but not yet formally proven. Conjectures
are generally advanced as hypotheses based on
patterns or trends in data but whose truth has not been
demonstrated rigorously. Some well-known
examples of conjectures to propose in class are the
Goldbach conjecture, the twin primes conjecture or
the Collatz conjecture.

The use of computer tools increasingly influences
mathematics. In particular, Python has become one of
the most used tools for exploring and verifying,
especially conjectures. While, on the one hand, the
formal proof of a theorem requires rigorous logical
deduction, on the other hand, Python allows to

perform numerical and empirical simulations that can
help to verify (not prove) theorems and conjectures,
at least in a limited context and under certain
conditions. By exploiting the enormous potential of
Large Language Models (LLMs), with little effort, it
is possible to have very efficient codes that can be
refined by operating interactively. Not only that, but
an interesting path is to ask for the formulation of a
conjecture that has not yet been formulated.

The integration of computational tools like
Python into the study of theorems and conjectures
offers significant educational opportunities. Using
programming to explore and test mathematical
concepts, students can gain a deeper, more interactive
understanding of mathematics. This approach moves
beyond abstract theory and engages students in the
practical process of mathematical discovery, where
they can test hypotheses, observe patterns, and refine
their reasoning.

In the text, we propose three examples that can
constitute a first basis for discussion; of course, it
would be possible to broaden the discussion, but a
much larger space would be needed.

2 Examples

Let us first examine Pick's theorem. It is an
interesting and valuable result in geometry, which
concerns the area of a polygon with vertices placed
on a grid of points with integer coordinates. This
theorem offers a formula that calculates the area of a

Alessio Drivet
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 133 Volume 10, 2025

polygon using the number of points I within the
polygon and the number of points B on its edges. The
formula of Pick's theorem is as follows:

A = I + B/2 −1.

The following program allows us to test the

theorem by constructing polygons with the desired
number of vertices on a grid in a desired number of
trials. We emphasize that it is a verification, a
numerical testbed; a proof is a separate matter.

Listing 1 Pick's Theorem Verification

import matplotlib.pyplot as plt
from shapely.geometry import Polygon
import math

def calculate_edge_points(vertices):
 """Calculate the number of integer points on the
edge of the polygon using the GCD."""
 border = 0
 number_vertices = len(vertices)
 for i in range(number_vertices):
 x1, y1 = vertices[i]
 x2, y2 = vertices[(i + 1) % number_vertices]
 border += math.gcd(abs(x2 - x1), abs(y2 - y1))
 return border

def calculate_interior_points(vertices):
 """Calculate the interior points using the formula
of Pick's Theorem."""
 n = len(vertices)
 area = 0
 for i in range(n):
 x1, y1 = vertices[i]
 x2, y2 = vertices[(i + 1) % n]
 area += x1 * y2 - y1 * x2
 area = abs(area) / 2
 edge = calculate_edge_points(vertices)
 interior = area - edge / 2 + 1
 return int(round(interior))

def calculate_area_with_pick(vertices):
 """Calculate the area using Pick's Theorem."""
 interior = calculate_interior_points(vertices)
 edge = calculate_edge_points(vertices)
 area = interior + edge / 2 - 1
 return area

def click_management(event):
 """Manages the acquisition of points clicked by
the user."""
 if event.xdata is not None and event.ydata is not
None:
 x, y = round(event.xdata), round(event.ydata)

 vertices.append((x, y))
 plt.scatter(x, y, color='red')
 plt.draw()
 if len(vertices) == number_vertices:
 plt.close()

def draw_grid(max_size):
 """Create an interactive grid for drawing
polygons."""
 fig, ax = plt.subplots(figsize=(6, 6))
 ax.set_xlim(0, max_size)
 ax.set_ylim(0, max_size)
 ax.set_xticks(range(0, max_size + 1))
 ax.set_yticks(range(0, max_size + 1))
 ax.grid(True)
 ax.set_aspect('equal', adjustable='box')
 fig.canvas.mpl_connect('button_press_event',
click_management)
 plt.show()

Input from user
vertices = []
number_vertices = int(input("Enter the number of
vertices of the polygon: "))
max_size = int(input("Enter the maximum size of the
grid: "))
number_of_experiments = int(input("Enter the
number of experiments to run: "))

Running the experiments
for i in range(number_of_experiments):
 vertices.clear()
 print(f"\nRunning experiment {i + 1}:")
 draw_grid(max_size)

 if len(vertices) == number_vertices:
 polygon = Polygon(vertices)
 calculated_area = polygon.area
 area_pick = calculate_area_with_pick(vertices)

 print(f"Calculated area (Shapely):
{calculated_area}")
 print(f"Area according to Pick's Theorem:
{area_pick}")

 # Draw the polygon with the results
 x, y = polygon.exterior.xy
 plt.figure(figsize=(6, 6))
 plt.plot(x, y, marker='o', linestyle='-')
 plt.fill(x, y, alpha=0.5, fc='r', ec='black')
 plt.title(f"Calculated Area:
{calculated_area}\nArea according to Pick:
{area_pick}")
 plt.grid(True)
 plt.gca().set_aspect('equal', adjustable='box')

Alessio Drivet
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 134 Volume 10, 2025

 plt.xticks(range(0, max_size + 1))
 plt.yticks(range(0, max_size + 1))
 plt.show()
 else:
 print("The specified number of vertices has not
been reached.")

Let's take Goldbach's conjecture as a second
example. It states that every even number greater
than 2 can be written as the sum of two prime
numbers.

A program can check whether there are

counterexamples up to a given input value. The
conjecture has not yet been formally proven, but it
has been verified numerically up to extremely large
numbers. Therefore, even if the program does not
find any counterexamples, it does not guarantee that
there are none. Up to 1,000,000 the program should
run in a few seconds or minutes. Up to 10,000,000
the program may take minutes or even hours.

Listing 2Goldbach's Conjecture

import sympy

Function to verify Goldbach's conjecture for a
single number
def verify_goldbach(num):
 if num <= 2 or num % 2 != 0:
 return None # Skip checking for numbers that
are not even or are less than 2

 # Find two prime numbers that sum to num
 for i in range(2, num // 2 + 1):
 if sympy.isprime(i) and sympy.isprime(num - i):
 return (i, num - i) # Return the pair of prime
numbers
 return None # No pair found, possible
counterexample

Main function to test all even numbers up to n
def test_goldbach_up_to(n):
 counterexample_found = False
 for i in range(4, n + 1, 2): # Check all even
numbers from 4 to n
 result = verify_goldbach(i)
 if result is None: # If no valid result is found,
it's a counterexample
 counterexample_found = True
 break # Stop the loop as soon as a
counterexample is found

 # Print a final message
 if counterexample_found:

 print("Counterexample found! At least one even
number cannot be expressed as the sum of two prime
numbers.")
 else:
 print(f"No counterexamples found for even
numbers from 2 to {n}.")

User input
n = int(input("Enter a number n to test all even
numbers up to n: "))

Test all even numbers up to n
test_goldbach_up_to(n)

For each even number n , the algorithm checks all
prime numbers less than n/2 to see if the sum forms
n . For very large values the number of checks for
each even number increases significantly and the
complexity is about O(n ⋅√ n).

To conclude this brief review, we can ask the AI

to create a new conjecture and implement its
verification. First, we define a "prime jump
permutation" as a permutation in which each element
moves from its original position by a number of
positions that is a prime number (positive or
negative), with the movements calculated modulo n.
The conjecture is:

For any n ≥ 3, the number of "prime jump

permutations" of n elements is NEVER divisible by n.

This conjecture has important implications in
group theory and combinatorics, since it indicates a
certain regularity in permutation structures.

Listing 3First jump conjecture

from itertools import permutations
from math import sqrt

def is_prime(number):
 """
 Check if a number is prime.
 """
 if number < 2:
 return False
 if number in (2, 3):
 return True
 if number % 2 == 0 or number % 3 == 0:
 return False
 i = 5
 while i * i <= number:
 if number % i == 0 or number % (i + 2) == 0:
 return False
 i += 6

Alessio Drivet
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 135 Volume 10, 2025

 return True

def is_prime_jump_permutation(permutation):
 """
 Check if a permutation satisfies the prime jump
condition.
 """
 n = len(permutation)
 for i, element in enumerate(permutation):
 jump = (element - i) % n
 if jump == 0 or not is_prime(jump):
 return False
 return True

def count_prime_jump_permutations(n):
 """
 Count how many permutations of length n satisfy
the prime jump condition.
 """
 return sum(1 for perm in permutations(range(n)) if
is_prime_jump_permutation(perm))

def verify_conjecture(max_limit):
 """
 Verify the conjecture for values of n from 3 to
max_limit.
 """
 print("{:<5} {:<10} {:<15} {:<20}".format("n",
"P(n)", "P(n) mod n", "Conjecture valid?"))
 print("-" * 60)
 for n in range(3, max_limit + 1):
 num_permutations =
count_prime_jump_permutations(n)
 remainder = num_permutations % n
 conjecture_valid = remainder == 0
 print("{:<5} {:<10} {:<15} {:<20}".format(n,
num_permutations, remainder, 'Yes' if
conjecture_valid else 'No'))

Verify the conjecture for n from 3 to 10
max_limit = 10
verify_conjecture(max_limit)

As can be seen from the output, the conjecture is
disproved for n = 10.

n P(n) P(n) mod n Conjecture valid?
--
3 1 1 No
4 2 2 No
5 2 2 No
6 17 5 No
7 24 3 No
8 258 2 No
9 448 7 No

10 770 0 Yes

Computational complexity can result in high
processing times. P(n) represents the number of
permutations of length n that satisfy the prime jump
condition. The most interesting aspect is that it is
possible to modify the program by adapting it to
variants of the conjecture, for example, by setting the
condition that the jump must be an odd number,
belong to a particular sequence (e.g., Fibonacci,
Catalan or prime numbers) or must be a composite
number.

3 Conclusions

This text highlights the role of computational
methods, particularly Python, in exploring and
verifying mathematical theorems and conjectures.
While formal proofs remain the cornerstone of
mathematical rigour, computational tools provide
valuable insights by enabling numerical experiments
and simulations that can support or challenge existing
conjectures. The examples presented demonstrate the
potential of computational verification but also
underscore the limitations of such approaches instead
of formal proof.

A simple program can test the twin prime
conjecture. The numerical verification of the twin
prime conjecture allows us to reason that, although
we do not have a formal proof, it is possible to collect
a large amount of empirical evidence that suggests
the conjecture's validity. This stimulates critical
thinking, as students must distinguish between
formal evidence and empirical verification.

Looking forward, there are several promising
directions for future work. First, extending the
current algorithms to handle more complex
conjectures or optimise computational efficiency
could yield more profound insights into unresolved
problems. Additionally, the integration of machine
learning techniques could further automate the
process of conjecture generation and hypothesis
testing, uncovering new mathematical patterns.

Moreover, as computational power continues to
grow, the boundaries between empirical testing and
formal proof may blur, with increasingly
sophisticated algorithms contributing to the
discovery of novel proofs or the disproof of long-
standing conjectures.

Alessio Drivet
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 136 Volume 10, 2025

References:

[1] Apostol, T. M. (2013). Introduction to analytic

number theory. Springer Science & Business
Media.

[2] Courant, R., & Robbins, H. (1941). What Is
Mathematics? Oxford University Press. New

York, 3540360.
[3] Cousin, A. A., Andrade, D., & Zenon, W. T.

(2010). Pick’s theorem in the
classroom. BOLETIM SOCIEDADE

PARANAENSE DE MATEMATICA, 28(1), 79-
83.

[4] Graham, R. L., Knuth, D. E., & Patashnik, O.
(1994). Concrete Mathematics,
AddisonWesley. Reading, MA.

[5] Hardy, G. H., & Wright, E. M. (1979). An

introduction to the theory of numbers. Oxford
university press.

[6] Izadkhah, H., & Behzadidoost, R.
(2024). Challenging Programming in Python: A

Problem Solving Perspective. Springer.
[7] Kosova, R., Kapçiu, R., Hajrulla, S., & Kosova,

A. M. (2023). A Revıew of Mathematical
Conjectures: Exploring Engaging Topics for
University Mathematics Students. International

Journal of Advanced Natural Sciences and

Engineering Researches (IJANSER), 7(11), 180-
186.

[8] Montgomery, H. L., & Vaughan, R. C.
(2007). Multiplicative number theory I:

Classical theory (No. 97). Cambridge university
press.

[9] Polis, C. (1991). Pick's Theorem extended and
generalized. Mathematics Teacher, 84(5), 399-
401.

[10] Richstein, J. (2001). Verifying the Goldbach
conjecture up to 4⋅ 10¹⁴ . Mathematics of

computation, 70(236), 1745-1749.
[11] Wang, Y. (2022). A proof of goldbach

conjecture by mirror-prime
decomposition. WSEAS Transactions on

Mathematics, 21, 563-571.
[12] Wang, Y. (2022). A Proof of the Twin

Prime Conjecture in the Ƥ x Ƥ Space. WSEAS

Transactions on Mathematics, 21, 585-593.

The author have no conflicts of interest to declare that
are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en
_US

Alessio Drivet
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 137 Volume 10, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

