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Abstract: - This study investigates the integration of computational methods—specifically the Python 
programming language—into the exploration and empirical testing of mathematical theorems and conjectures. 
The distinction between formally proven theorems and conjectures, which remain unproven but are widely 
believed to be true, serves as the conceptual framework. Three case studies are presented: a numerical verification 
of Pick’s Theorem; an algorithmic test of Goldbach’s Conjecture up to a user-specified bound; and a novel, AI-
generated conjecture concerning “prime jump permutations,” examined through exhaustive enumeration. While 
emphasizing the inherent limitations of computational experimentation in place of formal proof, this work also 
highlights the value of such approaches in supporting mathematical intuition, facilitating pattern recognition, and 
stimulating conjecture formulation. The results underscore the growing role of programming and artificial 
intelligence in contemporary mathematical inquiry. 
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1 Introduction 

 
Two fundamental concepts that characterize 

mathematics are theorems and conjectures. Although 
they are often associated concepts, they differ in the 
degree of certainty and how they are validated.  

A theorem is a mathematical statement confirmed 
through rigorous logical reasoning. In other words, a 
theorem is a proposition that starting from already 
known principles (axioms, definitions, previous 
theorems), is demonstrated to be true. Some famous 
examples of theorems discussed in school are the 
Pythagorean theorem on right-angled triangles and 
Euclid's theorem on the infinity of prime numbers. 
However, some theorems are rarely stated but 
extremely important, such as Jordan's topological 
theorem, Pick's geometric theorem, or Bayes' 
probabilistic theorem.  

Conversely, a conjecture is a statement believed 
to be true but not yet formally proven. Conjectures 
are generally advanced as hypotheses based on 
patterns or trends in data but whose truth has not been 
demonstrated rigorously. Some well-known 
examples of conjectures to propose in class are the 
Goldbach conjecture, the twin primes conjecture or 
the Collatz conjecture.  

The use of computer tools increasingly influences 
mathematics. In particular, Python has become one of 
the most used tools for exploring and verifying, 
especially conjectures. While, on the one hand, the 
formal proof of a theorem requires rigorous logical 
deduction, on the other hand, Python allows to 

perform numerical and empirical simulations that can 
help to verify (not prove) theorems and conjectures, 
at least in a limited context and under certain 
conditions. By exploiting the enormous potential of 
Large Language Models (LLMs), with little effort, it 
is possible to have very efficient codes that can be 
refined by operating interactively. Not only that, but 
an interesting path is to ask for the formulation of a 
conjecture that has not yet been formulated.  

The integration of computational tools like 
Python into the study of theorems and conjectures 
offers significant educational opportunities. Using 
programming to explore and test mathematical 
concepts, students can gain a deeper, more interactive 
understanding of mathematics. This approach moves 
beyond abstract theory and engages students in the 
practical process of mathematical discovery, where 
they can test hypotheses, observe patterns, and refine 
their reasoning. 

In the text, we propose three examples that can 
constitute a first basis for discussion; of course, it 
would be possible to broaden the discussion, but a 
much larger space would be needed. 

 

2 Examples 
 

Let us first examine Pick's theorem. It is an 
interesting and valuable result in geometry, which 
concerns the area of a polygon with vertices placed 
on a grid of points with integer coordinates. This 
theorem offers a formula that calculates the area of a 
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polygon using the number of points I within the 
polygon and the number of points B on its edges. The 
formula of Pick's theorem is as follows:  

 
A = I + B/2 −1. 

 
The following program allows us to test the 

theorem by constructing polygons with the desired 
number of vertices on a grid in a desired number of 
trials. We emphasize that it is a verification, a 
numerical testbed; a proof is a separate matter. 
 

Listing 1 Pick's Theorem Verification 

import matplotlib.pyplot as plt 
from shapely.geometry import Polygon 
import math 
 
def calculate_edge_points(vertices): 
    """Calculate the number of integer points on the 
edge of the polygon using the GCD.""" 
    border = 0 
    number_vertices = len(vertices) 
    for i in range(number_vertices): 
        x1, y1 = vertices[i] 
        x2, y2 = vertices[(i + 1) % number_vertices] 
        border += math.gcd(abs(x2 - x1), abs(y2 - y1)) 
    return border 
 
def calculate_interior_points(vertices): 
    """Calculate the interior points using the formula 
of Pick's Theorem.""" 
    n = len(vertices) 
    area = 0 
    for i in range(n): 
        x1, y1 = vertices[i] 
        x2, y2 = vertices[(i + 1) % n] 
        area += x1 * y2 - y1 * x2 
    area = abs(area) / 2 
    edge = calculate_edge_points(vertices) 
    interior = area - edge / 2 + 1 
    return int(round(interior)) 
 
def calculate_area_with_pick(vertices): 
    """Calculate the area using Pick's Theorem.""" 
    interior = calculate_interior_points(vertices) 
    edge = calculate_edge_points(vertices) 
    area = interior + edge / 2 - 1 
    return area 
 
def click_management(event): 
    """Manages the acquisition of points clicked by 
the user.""" 
    if event.xdata is not None and event.ydata is not 
None: 
        x, y = round(event.xdata), round(event.ydata) 

        vertices.append((x, y)) 
        plt.scatter(x, y, color='red') 
        plt.draw() 
        if len(vertices) == number_vertices: 
            plt.close() 
 
def draw_grid(max_size): 
    """Create an interactive grid for drawing 
polygons.""" 
    fig, ax = plt.subplots(figsize=(6, 6)) 
    ax.set_xlim(0, max_size) 
    ax.set_ylim(0, max_size) 
    ax.set_xticks(range(0, max_size + 1)) 
    ax.set_yticks(range(0, max_size + 1)) 
    ax.grid(True) 
    ax.set_aspect('equal', adjustable='box') 
    fig.canvas.mpl_connect('button_press_event', 
click_management) 
    plt.show() 
 
# Input from user 
vertices = [] 
number_vertices = int(input("Enter the number of 
vertices of the polygon: ")) 
max_size = int(input("Enter the maximum size of the 
grid: ")) 
number_of_experiments = int(input("Enter the 
number of experiments to run: ")) 
 
# Running the experiments 
for i in range(number_of_experiments): 
    vertices.clear() 
    print(f"\nRunning experiment {i + 1}:") 
    draw_grid(max_size) 
 
    if len(vertices) == number_vertices: 
        polygon = Polygon(vertices) 
        calculated_area = polygon.area 
        area_pick = calculate_area_with_pick(vertices) 
 
        print(f"Calculated area (Shapely): 
{calculated_area}") 
        print(f"Area according to Pick's Theorem: 
{area_pick}") 
 
        # Draw the polygon with the results 
        x, y = polygon.exterior.xy 
        plt.figure(figsize=(6, 6)) 
        plt.plot(x, y, marker='o', linestyle='-') 
        plt.fill(x, y, alpha=0.5, fc='r', ec='black') 
        plt.title(f"Calculated Area: 
{calculated_area}\nArea according to Pick: 
{area_pick}") 
        plt.grid(True) 
        plt.gca().set_aspect('equal', adjustable='box') 
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        plt.xticks(range(0, max_size + 1)) 
        plt.yticks(range(0, max_size + 1)) 
        plt.show() 
    else: 
        print("The specified number of vertices has not 
been reached.") 
 

Let's take Goldbach's conjecture as a second 
example. It states that every even number greater 
than 2 can be written as the sum of two prime 
numbers. 

 
A program can check whether there are 

counterexamples up to a given input value. The 
conjecture has not yet been formally proven, but it 
has been verified numerically up to extremely large 
numbers. Therefore, even if the program does not 
find any counterexamples, it does not guarantee that 
there are none. Up to 1,000,000 the program should 
run in a few seconds or minutes. Up to 10,000,000 
the program may take minutes or even hours. 
 

Listing 2Goldbach's Conjecture 

import sympy 
 
# Function to verify Goldbach's conjecture for a 
single number 
def verify_goldbach(num): 
    if num <= 2 or num % 2 != 0: 
        return None  # Skip checking for numbers that 
are not even or are less than 2 
     
    # Find two prime numbers that sum to num 
    for i in range(2, num // 2 + 1): 
        if sympy.isprime(i) and sympy.isprime(num - i): 
            return (i, num - i)  # Return the pair of prime 
numbers 
    return None  # No pair found, possible 
counterexample 
 
# Main function to test all even numbers up to n 
def test_goldbach_up_to(n): 
    counterexample_found = False 
    for i in range(4, n + 1, 2):  # Check all even 
numbers from 4 to n 
        result = verify_goldbach(i) 
        if result is None:  # If no valid result is found, 
it's a counterexample 
            counterexample_found = True 
            break  # Stop the loop as soon as a 
counterexample is found 
     
    # Print a final message 
    if counterexample_found: 

        print("Counterexample found! At least one even 
number cannot be expressed as the sum of two prime 
numbers.") 
    else: 
        print(f"No counterexamples found for even 
numbers from 2 to {n}.") 
 
# User input 
n = int(input("Enter a number n to test all even 
numbers up to n: ")) 
 
# Test all even numbers up to n 
test_goldbach_up_to(n) 
 

For each even number n , the algorithm checks all 
prime numbers less than n/2 to see if the sum forms 
n . For very large values the number of checks for 
each even number increases significantly and the 
complexity is about O(n ⋅√ n). 

 
To conclude this brief review, we can ask the AI 

to create a new conjecture and implement its 
verification. First, we define a "prime jump 
permutation" as a permutation in which each element 
moves from its original position by a number of 
positions that is a prime number (positive or 
negative), with the movements calculated modulo n. 
The conjecture is: 
 
For any n ≥ 3, the number of "prime jump 

permutations" of n elements is NEVER divisible by n. 
 

This conjecture has important implications in 
group theory and combinatorics, since it indicates a 
certain regularity in permutation structures. 
 

Listing 3First jump conjecture 

from itertools import permutations 
from math import sqrt 
 
def is_prime(number): 
    """ 
    Check if a number is prime. 
    """ 
    if number < 2: 
        return False 
    if number in (2, 3): 
        return True 
    if number % 2 == 0 or number % 3 == 0: 
        return False 
    i = 5 
    while i * i <= number: 
        if number % i == 0 or number % (i + 2) == 0: 
            return False 
        i += 6 
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    return True 
 
def is_prime_jump_permutation(permutation): 
    """ 
    Check if a permutation satisfies the prime jump 
condition. 
    """ 
    n = len(permutation) 
    for i, element in enumerate(permutation): 
        jump = (element - i) % n 
        if jump == 0 or not is_prime(jump): 
            return False 
    return True 
 
def count_prime_jump_permutations(n): 
    """ 
    Count how many permutations of length n satisfy 
the prime jump condition. 
    """ 
    return sum(1 for perm in permutations(range(n)) if 
is_prime_jump_permutation(perm)) 
 
def verify_conjecture(max_limit): 
    """ 
    Verify the conjecture for values of n from 3 to 
max_limit. 
    """ 
    print("{:<5} {:<10} {:<15} {:<20}".format("n", 
"P(n)", "P(n) mod n", "Conjecture valid?")) 
    print("-" * 60) 
    for n in range(3, max_limit + 1): 
        num_permutations = 
count_prime_jump_permutations(n) 
        remainder = num_permutations % n 
        conjecture_valid = remainder == 0 
        print("{:<5} {:<10} {:<15} {:<20}".format(n, 
num_permutations, remainder, 'Yes' if 
conjecture_valid else 'No')) 
 
# Verify the conjecture for n from 3 to 10 
max_limit = 10 
verify_conjecture(max_limit) 
 
As can be seen from the output, the conjecture is 
disproved for n = 10. 
 
n     P(n)       P(n) mod n      Conjecture valid?    
------------------------------------------------------------ 
3     1          1               No                   
4     2          2               No                   
5     2          2               No                   
6     17         5              No                   
7     24         3              No                   
8     258        2             No                   
9     448        7             No                   

10    770        0            Yes 
 

Computational complexity can result in high 
processing times. P(n) represents the number of 
permutations of length n that satisfy the prime jump 
condition. The most interesting aspect is that it is 
possible to modify the program by adapting it to 
variants of the conjecture, for example, by setting the 
condition that the jump must be an odd number, 
belong to a particular sequence (e.g., Fibonacci, 
Catalan or prime numbers) or must be a composite 
number. 
 

3 Conclusions 
 

This text highlights the role of computational 
methods, particularly Python, in exploring and 
verifying mathematical theorems and conjectures. 
While formal proofs remain the cornerstone of 
mathematical rigour, computational tools provide 
valuable insights by enabling numerical experiments 
and simulations that can support or challenge existing 
conjectures. The examples presented demonstrate the 
potential of computational verification but also 
underscore the limitations of such approaches instead 
of formal proof. 

A simple program can test the twin prime 
conjecture. The numerical verification of the twin 
prime conjecture allows us to reason that, although 
we do not have a formal proof, it is possible to collect 
a large amount of empirical evidence that suggests 
the conjecture's validity. This stimulates critical 
thinking, as students must distinguish between 
formal evidence and empirical verification. 

Looking forward, there are several promising 
directions for future work. First, extending the 
current algorithms to handle more complex 
conjectures or optimise computational efficiency 
could yield more profound insights into unresolved 
problems. Additionally, the integration of machine 
learning techniques could further automate the 
process of conjecture generation and hypothesis 
testing, uncovering new mathematical patterns.  

Moreover, as computational power continues to 
grow, the boundaries between empirical testing and 
formal proof may blur, with increasingly 
sophisticated algorithms contributing to the 
discovery of novel proofs or the disproof of long-
standing conjectures. 
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