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 Abstract: This article is devoted to developing a deep learning method to the numerical solution of the partial differential 

equations (PDEs). Graph kernel neural networks (GKNN) approach to embedding graphs into a computationally numerical 

format has been used. In particular, for investigation mathematical models of the dynamical system of cancer cells invasion in 

inhomogeneous areas of human tissues has been considered. Neural operators were initially proposed to model the differential 

operator of PDEs. The GKNN mapping features between input data to the PDEs and their solutions has been constructed. The 

boundary integral method in combination Green's functions for a large number of boundary conditions are used.  The tools 

applied in this development are based on the Fourier neural operators (FNOs), graph theory, theory elasticity, and singular 

integral equations. 
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1. Introduction 

EEP learning is a sub-discipline of artificial intelligence that 

uses machine learning algorithms based on the artificial 

neural networks to create patterns and make predictions from 

large data sets [1]. We propose to solve PDEs by 

approximating the solution with a deep 

neural network (DNN) which is trained to satisfy the 

differential operator, initial condition, and boundary 

conditions [2] 
The increasing adoption of deep learning across healthcare 

domains together with the availability of highly 

characterized cancer datasets has accelerated research into 

the utility of deep learning in the analysis of the complex 

biology of cancer. In this work the dynamical system of 

tumor cells driving in the human tissues are 

investigated. With the introduction of the deep learning 

framework, there have been numerous attempts to create 

more efficient approaches of numerical solutions of PDEs 

by using a graph kernel algorithm and a spectral 

decomposition of Laplacian graph approach [6]. A cancel 

cell network of distribution into tissues can be represented 

as a dynamic graph. In this paper we present a graph neural 

operator-based method to define mathematical   problems 

to model the dynamical model of diffusion of tumor cells. 

Cancer invasion and the ability of malignant tumor cells for 

directed migration and metastasis have remained a focus of 

research for many years. Numerous studies have confirmed 

the existence of two main patterns of cancer cell invasion: 

collective cell migration and individual cell migration, by 

which tumor cells overcome barriers of the extracellular 

matrix and spread into surrounding tissues. Each pattern of 

cell migration displays specific morphological features and 

the biochemical/molecular genetic mechanisms underlying 

cell migration [1]. Cancer can also spread from where it 

first started to other parts of the body. This process is 

called metastasis [2]. Cancer cells can metastasize when 

they break away from the tumor and travel to a new 

location in the body through the blood or lymphatic 

system. Where cancer can spread and staging. Most 

cancers have a tendency to spread to certain areas of the 

body. This has helped doctors develop staging systems that 

are used to classify cancers based on information about 

where the cancer is in the body and if it has spread from 

where it started [1]. 

Immunotherapies have revolutionized treatments for several 

types of cancers, but have been met with clinical trial failures 

in others. To improve immunotherapeutic approaches requires 

understanding how the immune system interacts around and 

within a tumor, allowing us to establish effective 

immunotherapeutic protocols. Mathematical modelling can 

help identify the mechanisms at the heart of 

immunotherapeutic efficacy and design successful therapeutic 

regimens. 

2. Notations and Definitive Consepts 

The mechanics of cancer cells can be described using linear 

elasticity theory for biomechanical systems [5]. In contrast to 

the molecular dynamics simulations, finite element analysis 

requires less computation power and can be used to model 

larger portions or the entire length of cancer. Therefore, finite 

element analysis is a useful tool to approximate and estimate 

the mechanical properties diffuse interface models have gained 

a growing interest in cancer research for their ability to 

investigate the mechanic-biological features during tumor 

progression and to provide simulation tools for personalized 

anti-cancer strategies at an affordable computational cost. Here 

we propose a diffuse interface model for tumors evolution 

which accounts for an interfacial structure mimicking a finite 

elastic confinement at the tumor boundary, possibly due either 

to a localized elastic stress induced by host tissue 
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displacements area. This model consists of the system of   a 

partial differential equation of thermos- elasticity. 

In contrast to the molecular dynamics simulations, finite 

element analysis requires less computation power and can be 

used to model larger portions or the entire length of 

microcells. Therefore, finite element analysis is a useful tool to 

approximate and estimate the mechanical properties of the 

microtubules. Fourier neural operators (FNOs) are used to 

create a neural operator pseudo oscillation system of PDEs. 

The relaxation dynamics of the cancer cells are described by 

the following system of partial differential equations: 

 

 

                                             (1) 

 

is a 

displacement vector,  is a temperature 

variation, -points of  

two-dimensional Euclidean space, 

( , bounded by the close 

surface  of Holder class with outward 

positive normal vector. 

   is neural operator for PDEs of 

- elliptic operator of PDEs of biomechanical system 

described as a  follow: 

       
 



















22

,xL     (2) 

 
Where  

0,0,023,0,0 



   are the 

constants of elasticity, temperature and diffusion parameters in 

 

001  constants of relaxation, is a two-dimensional 

Laplacian operator; 
 

(corresponds to the 

general dynamical problems) [5],[6], 

is a given vectors.  

 

3. Deep Learning of Green’s Function 

      For numerically study we propose a graph neural network 

for the solution of the problem  . 

There are a variety of ways to go about embedding graphs, 

each with a different level of        granularity.  In our 

investigations Graph Kernel Network (GKN) techniques on 

processing the entire graph have been used. 
In particularly the  Green's functions Artificial Neural Network 

(ANN) approach are used and therefor the solutions are 

described as follows: 

 

          (3)  

 

Where G(x,y) is the 2d-dimensional Green’s tensor 
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,
x

yxG  [3] that represents the impulse response of the 

underlying system subject to homogeneous Dirichlet boundary 

condition, namely, for any fixed x ∈ D [5]. 

 

4. Neural Green’s Function 

Constructing the analytic Green’s function for a given 

domain is in general a difficult matter, but accordingly 

theory of elasticity the (1) problem has regular solutions 

and Green’s function can be represented in quadrature 

[4]. 

In order (2) neural Green’s function is derived as a 

follow: 

            (4)          

Where is accountable sequence of Eigen 

pairs. 

 As a result of (2) and (3) when utilizing the Green’s 

function to obtain the solution, the exact solution and its 

numerical approximationˆ can be represented through 

 

   (5) 

(6) 

In order to assumptions of Green's tensor [5] and 

applying the Cauchy-Schwarz  inequality [4], we have 

 

                                               (7) 

 

 Let us consider particular case of boundary conditions 

for (1) in finite space , with respect to 

 we have:  

Let us introduce the following notation: 

 

,   , 

 
 

In order to investigate the spectral bias in the training 

dynamics related to (2) expand the approximation error 

during the training process in terms of the orthonormal 

eigenfunctions in the following form[7,11]: 
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Where 

  

in   

 

Here we only focus on the interior approximation error, 

as the Dirichlet boundary condition can be enforced by  

defining the  loss over high frequencies   for our 

neural approximation as: 

                                                                        (9) 
 

Let us consider numerical experiments to show 

effectiveness of our approach in solving the one-

dimensional indefinite boundary value problems, 

throughout the training process, we employ a fully-

connected neural network with a tanh activation 

function [12], 14]. 

As a result, the approximate solution of problem (1) 

can be immediately obtained using our neural Green’s 

function (Figure 1,2). The numerical solution using our 

neural Green’s function has the approximation error 

(Figure 3). 

Let us consider the particular case of boundary 

conditions with respect to (1). 

Problem. It is required to find in D the regular 

solution  
133,

xk

T
uuuU  , of system (1), which 

satisfies the boundary condition; the displacement 

vector and temperature variations are given on the  

02 x  line:
 
  

        13131

1

1 0,,0, xxuxxu   . 

 

Therefor the solutions are described as follows: 
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Where    21

*

21 ,,, xxxxxx  , 
  1

0H -is Hankel 

Function of the First Kind (the zero order)[5]-13].  

 

 

 
Figure 1. The numerical solution  on the surface together for 

solving (1) 

 
Figure 2. The numerical solution  on the surface together 

with the projection into space  
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Figure3. The exact solution U and numerical solution   using 

neural Green’s function with the approximation error:  

5. Conclusion 

In this work a novel framework for solving regular 

PDEs using Deep Neural Networks is developed, 

extended, and analyzed. A novel data-enrichment 

algorithm into neural   Green’s function framework is 

presented, Benefits of graph embedding in treatment 

being able to represent data using graph embedding 

offers great benefits, including: 

 The embeddings can be used in machine 

learning prediction tasks. 

 Graph embedding allows researchers to 

explore hidden patterns of censored cells 

within large networks of data. 

 This greatly enhances the accuracy and 

efficiency of machine learning algorithms 

 By identifying hidden patterns, researchers 

can make informed decisions and come up 

with better solutions for complex problems. 

The method to modify the boundary problem through a 

deep learning algorithm to perform the long-time 

simulation for the rogue wave by the superior 

numerical errors is developed. The proposed method 

gives rise to the better numerical results with MI in 

comparison with the ones obtained by traditional 

methods. 
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