
Software Project Quality Parameters Can Be Expressed as Functions of

Software Project Growth Parameters

EKBAL RASHID1, NIKOS E. MASTORAKIS2

 1Technical University of Sofia, Sofia, BULGARIA
2Sector of Electrical Engineering and Computer Science, Hellenic Naval Academy, Piraeus, GREECE

and English Language Faculty of Engineering,
Technical University of Sofia, Sofia, BULGARIA

Received: March 7, 2024. Revised: August 9, 2024. Accepted: September 12, 2024. Published: October 22, 2024.

Abstract: The tremendous success of software projects like Linux Foundation, Python Foundation,
Apache, Gnome, Fedora, Ubuntu, have inspired researchers to study the different aspects of growth and
quality of such software projects. This area of research is finding importance in industry and academics.
This has compelled companies like Microsoft and Apple, to look towards community ways of software
development, and that is paying them good dividends. In this backdrop, the present work aims to
correlate the growth parameters of such kinds of collaborative community-based projects to their quality
parameters. It aims to identify those growth parameters that would directly affect quality of the software
projects.

Keywords: Software projects, Software Engineering, Collaborative Software, Predict

1. Introduction

As complex software continues to play
important roles in our lives, we face challenges
of getting involved in very large software
projects [1] [2][3]. Such projects involve the
efforts of a significant number of developers,
designers, programmers, testers, maintainers,
and of course users. Such software projects
evolve over time with continuous and
collaborative efforts. These collaborations may
be planned and may involve definite and pre-
determined developers most of whom are often
employees of some organization and are paid to
work for the growth and maintenance of the
project [4][5]. Otherwise, developers may also
belong to some community or constitute just
temporary part time involvements that
collaborate in such big projects. Such
developers may not be paid or may not even be

recruited in a planned manner. Their entries and
exits into the project may be totally arbitrary
and non deterministic [6]. Moreover, the quality
of developers getting involved in such projects
is not the same [7]. The time that the developers
spend in coding or other development work is
also not uniform. There are often peak times
when the software development work is going at
full throttle and there are times when no work is
done for several weeks. Quite naturally, the
quality of the software project in such cases is
difficult to determine and more difficult to
predict [8].
In spite of all this a considerable amount of time
and energy is being used in recent times to
actually understand the process of software
development in such collaborative projects [9].
The chief reason for this is the tremendous
success of many such gigantic projects such as
Linux distributions, Apache, Open Office,

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 43 Volume 9, 2024

Gnome etc. Even proprietary organizations are
considering involving communities in their
endeavors to harness the benefit of open
collaborative work. And when such attempts are
being made, it becomes quite incumbent to
develop software engineering models for such
kinds of projects [10]. Certainly, such projects
will work on models quite different from the
traditional software models [11]. At the same
time their growth and quality determination
would be more complex and would require
different kinds of metrics [12].

There have been attempts in the past to
understand patterns in collaborative efforts. A
huge amount of data is available in software
repositories of such collaborative software
projects and that has been mined and various
types of inferences have been drawn. However,
the author feels that there is a need to review
and if necessary suggest improvements in the
methods of data mining used to mine software
repositories of such kinds. Moreover, the author
hasn’t found any concrete suggestions in
software engineering practices for such kinds of
projects. Over and above, the author has felt that
enhancements can be made in the domain of
metrics for understanding the growth of such
projects as well as for determining the quality of
such projects. There is a scope of applying
mathematical concepts and tools to concretely
understand and use such metrics in real work.
There also remains an area of concern as to why
study about such collaborative software remains
confined to only academic activities and are
seldom absorbed in practical fields. A number
of important international conferences are
organized by significantly important
organizations to understand the trends
developing in this field. An example of such a
conference is the International Conference on
Mining Software Repositories organized by
IEEE TCSE and ACM SIGSOFT [13][14]. Such
conferences have been publishing rich literature
over several years in the field of data mining
software repositories to uncover interesting

knowledge. However there is very little
knowledge about any of such discovered facts
presented in actual scenarios for uplifting
quality standards. The author feels that there
needs to be a mechanism to actually study such
important developments and incorporate the
same to practical fields in collaborative software
development. If this is achieved, the quality of
software being developed will rise to greater
levels and will also usher in newer areas of
research and progress.
There can actually be many areas of study in
this particular domain. Some of them are:
building models for development processes in
collaborative software projects, analysis of
ecosystems and growth of collaborative
software projects, data mining of software
repositories to analyze and predict future quality
of software, software engineering models for
collaborative projects based on historical data
from repositories, richer algorithms for mining
software repositories, developing tools for data
mining of software repositories, mining data
related to bugs and bug fixes in software
repositories, programming language specific
data mining of software repositories, building
infrastructure for sharing data mined from
software repositories and many more [15][16].
This research is inspired from the recent
developments in these fields and the tremendous
importance that it has in the realm of research
and other related work. Data mining of software
repositories is relatively a new area of research
and there remains much to be studied and
accomplished in this direction. Moreover, this
field has the potential of influencing other
epistemological areas. Research methodologies
are being influenced by data over the past years.
The large amount of data available in practically
all domains of scientific and social activities has
made this possible. Knowledge discovery from
software repositories can pave the way for a
similar sort of outlook in other fields too,
leading to a more objective study of the universe
as a philosophical category.

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 44 Volume 9, 2024

2. Scope of the Problem

The research mainly covers the problem of
finding a relation of collaborative growth with
quality of the software. The pertinent questions
in this regard are:
Does the size of a software project have to do
anything with the quality of the software? Does
it enhance the quality or does it degrade the
quality of the software project. Or is the quality
of the software project independent of the
growth of the software? Can the growth of the
software have different aspects? Can we relate
the growth in the number of people
collaborating in the project to the quality of the
software? Can we co relate the increase in the
number of lines of code to the enhancement of
quality? There may be a possibility that the
number of people collaborating is increasing but
the quality of software projects is not. Or maybe
the number of collaborators has no effect on the
quality. Or it may be so that the number of
collaborators and the number of lines of code
both have got some role to play in the quality
enhancement. It may be that something else like
the rate of growth is somehow related to the
quality of the software project. Can we devise
data mining methods to mine the data available
in the software repositories to actually discover
interesting facts related to growth analysis,
growth rates and quality estimation of software
projects? Closely linked to the software project
quality is the issue of security. Obviously any
software can’t be of high quality if it is not
secure. Now it is being widely recognized that
collaborative and more so open source software
are more secure than non open source ones. This
is because there are more chances of bugs being
detected and once detected there are better
chances of getting the fixes as there are a large
number of people collaborating. However it
would be interesting to find if there is some kind
of a mathematical relation between the number
of collaborators and the security of the software.
Similarly with the volume of the project, it

would be interesting to try and study whether
there is any relation between the growth of the
software and the issues of security. Maybe the
project is growing because people feel it is more
secure. Maybe people do not like to use things
that are less secure and so less secure projects
are not likely to grow at increasing rates.
Another problem that needs to be addressed in
this regard is that are the present methods and
algorithms of data mining sufficiently capable to
unearth the interesting things that the author
mentions in this problem statement? Or are
there other ways and means to actually
understand and delve into the software
repositories to study the growth analysis. The
problem also lies in having a better
understanding of what actual quality of software
means so far as large and collaborative software
is concerned. Are the current metrics defined
sufficient to understand software quality in the
present perspective? Or is there a need of further
refining the metrics and redefining some so that
software quality can be studied and understood
in the perspective that is being discussed herein.
It may be the case that only some metrics are
related to growth and growth rates. Other kinds
of metrics describing software quality may not
at all be related to such issues. Which metrics
and in what way their relations exist are an issue
of interest in the current problem solving effort.
Will the data mining activities point to pertinent
issues in this regard?

3. Significance of the research

1. A relation between growth parameters and
quality parameters will help to make the task of
estimating software quality more objective. This
is because the growth and growth rates are
bound to be very objective and measurable
quantities. Once growth, growth rates and other
aspects related to growth of software projects
get linked to quality parameters, the latter also
becomes measurable or at least capable of being
calculated from directly measurable quantities.

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 45 Volume 9, 2024

2. This implies that people will start measuring the
growth or growth related parameters of software
projects and from those measurements they can
easily estimate software quality metrics.

3. This may also open the doors for future research
in the field of relating growth and growth rates
of software projects to its quality and the
estimation of quality from these parameters.

4. This research will pave the way for
understanding software engineering principles
in a better manner for such collaborative
projects. There may be a possibility of better
software engineering models coming up on the
basis of this research work.

5. Communities can be developed in schools,
colleges, universities, offices, workplaces in a
scientific way to help produce quality software.

4. Methodology

The method has evolved out of extensive
literature study and first hand experience in
contributing to open source software projects.
There are several quality parameters such as bug
fixing rates, number of security features,
enhanced lines of code, increase in number of
packages that can be linked to software quality.
An intuitive understanding that these growth
parameters may enhance software quality is

quite agreeable. Besides, extensive research
work is being conducted and large amounts of
primary and secondary data have been collected
to study and analyze these parameters. Quality
is also an extensive research issue for software
engineers. There is every possibility of drawing
Mathematical models for relating the two
aspects of software projects – namely, growth
and quality. Hence the method applied is
justified in the present work.

5. Results Analysis

The research aims to discover concrete and
effective steps to engineer collaborative project
involvements, and their growth so as to
estimate, predict and enhance the quality of such
software projects in a systematic manner. These
findings can shape community projects at
various places starting from schools, colleges,
institutes, offices, industries with software
engineering models to control growth
parameters and produce quality software
everywhere. Results can be seen in
fig1,fig2,fig3 ,fig4 and fig5.

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 46 Volume 9, 2024

Fig1: Quantity vs Quality

Fig2: Predicted mean and predicted points interval

Fig3: Quantity vs residuals

Fig 4: Studentized residuals

Fig 5: qqplot residuals

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 47 Volume 9, 2024

References

[1] Padhye, Rohan & Kumarasamy Mani, Senthil
Kumar & Sinha, Vibha. (2014) A study of external

community contribution to open-source projects on

GitHub. 10.1145/2597073.2597113. (ResearchGate)
[2] Hata H, Todo T, Onoue S, Matsumoto K (2015)
Characteristics of sustainable oss projects: A
theoretical and empirical study. In: Proceedings of
the 8th international workshop on cooperative and
human aspects of software engineering, CHASE ’15.
IEEE Press, Piscataway, pp 15–21.
[3] Tamburri, D.A., Palomba, F., Serebrenik, A. et
al. Discovering community patterns in open-source:
a systematic approach and its evaluation. Empire
Software Eng 24, 1369–1417 (2019).
https://doi.org/10.1007/s10664-018-9659-9
(Springer)
[4] Gamalielsson J, Lundell B (2013) Sustainability
of open source software communities beyond a fork:
how and why has the libreoffice project evolved? J
Syst Softw 3(11):128–145.
https://doi.org/10.1016/j.jss. 2013.11.1077
[5] Schweik CM (2013) Sustainability in open
source software commons: lessons learned from an
empirical study of sourceforge projects. Technol
Innov Manag Rev 3:13–19.
http://timreview.ca/article/645
[6] Tamburri DA, Lago P, van Vliet H (2013a)
Organizational social structures for software
engineering. ACM Comput Surv,46(1):3,1–3,35.
https://doi.org/10.1145/2522968.2522971
[7] D. Nemer. IMPEX: An Approach to Analyse

Source Code Changes on Software Run Behaviour.
Journal of Software Engineering and Applications,
2013, vol. 6, no. 4
[8] S. Butler, M. Wermelinger, Y. Yu and H. Sharp.
Exploring the Influence of Identifier Names on Code

Quality: An Empirical Study. 14th European
Conference on Software maintenance and
Reengineering, Madrid, Spain, 2010.
[9] B. D. Bois, T. Mens. Describing the impact of

refractoring on internal program quality. ELISA
workshop, Amstredam, Netherlands, 2003.
[10] C. Gerlec, M. Hericko. Analysing Structural

Software Changes: A Case Study. BCI-LOCAL

2012, Novi Sad, Serbia, 2012.
[11] Aggarwal K., Hindle A., Stroulia E. Co-

evolution of project documentation and popularity

within GitHub in proceedings of MSR 2014, ACM
pp.361-362. ISBN: 978-1-4503-2863-0

[12] T. F. Bisisyande. Got Issues? Who cares about

it? A large-scale investigation of issue trackers from

GitHub. IEEE 21st international Symposium on
Software Reliability Engineering (ISSRE). Nov.
2013 pp. 189-196
[13] Jarczyk O. and others in GitHub Projects.

Quality Analysis of Open-Source Software. Social
Informatics Springer, Cham, Nov. 2014 pp. 81-89
[14] Peterson Kevin on Mining GitHub: Why

Commit Stops Exploring the Relationship between

Developer’s Commit Pattern and File Version

Evolution. 20TH Asia Pacific Software Engineering
Conference Vol. 2 Dec 2013, pp. 164-170
[15] Kalliamvakou E. and others. The Promises and

Perils of Mining GitHub. Proceedings of the 11th
Working Conference on Mining Software
Repositories MSR 2014 ACM pp. 92-101
[16] Weicheng Y., Beijun S., Ben X. Mining

GitHub: Why Commit Stops Exploring the

Relationship between Developer’s Commit Pattern

and File Version Evolution. 20th Asia Pacific
Software Engineering Conference Vol. 2 Dec. 2013

Ekbal Rashid, Nikos E. Mastorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 48 Volume 9, 2024

https://doi.org/10.1016/j.jss.%202013.11.1077
http://timreview.ca/article/645
https://doi.org/10.1145/2522968.2522971

