
Activity’ and ‘Effort’ as Quantitative Parameters of Software Projects

EKBAL RASHID
Department of CSE, Rtcit, Ranchi, INDIA

Abstract: - GitHub in 2023 has listed the top ten repositories in terms of number of contributors. The authors of the
present paper felt it necessary to take a look at these repositories on the basis of some quantitative parameters to
gather some insight as to why these projects have been successful. In this paper there have been attempts to define
some novel parameters as ‘activity’ and ‘effort’ of different kinds. These parameters have also been calculated for
the top ten projects. Based on these data, some inferences have been made relating quantitative study of software
projects to the quality of these projects and there is also the scope of some future work in this field. The
significance of study is sufficiently interesting and has been adequately explained.

Key-Words : - GitHub, repositories, activity, effort.

Received: April 27, 2022. Revised: August 16, 2023. Accepted: September 22, 2023. Published: October 4, 2023.

1 Introduction
GitHub is an important place to look for data if we
want to understand the quantitative growth of software
projects. The GitHub repositories remain an interesting
place to explore and draw conclusions in this matter.
2020 has been a time of extraordinary developments so
far as the world of software development is concerned.
With governments urging citizens to remain at home
and work from home, GitHub has seen a huge surge of
activity inspiring developers from all over the globe to
collaborate and get involved in innovation in the search
for connections and the attempts to dig for solutions to
problems. The GitHub publishes the ‘State of
Octoverse’ each year outlining interesting facts and
figures. As per the document presented for the year
2020[1], there are more than fifty-six million
developers with more than 60 million repositories
created just in the year 2020. The GitHub has lots of
data about these repositories. We can extract historical
and current data using suitable methods of data
collection. There is also the Google Big Query where
much data about GitHub repositories are present in the
public domain for researchers to explore and draw
conclusions. The research about all that data will form
the basis of some future work, but at present this paper
holds some data about some of the top projects in
GitHub listed on the basis of number of contributors to
the project. Now, if we can discuss what data we can
find about these projects, then the answer to this
question is that lots and lots of data can be found. We
can find when a particular project was started, for how
long it worked, how it grew, how people collaborated
in the project, how lines of code got into it. How there
were forks, pull requests and commits. How branches
came into existence for different projects and how they
were integrated into the master branch, all these and
many more things can be found on delving into GitHub
data. And how do we do it? Well, GitHub has excellent

documentation [2] on how we can search data on this
platform and also about what type of data we can look
for. In this paper the authors have mainly dealt with
some ratios. There has been an attempt to define some
new terms regarding the activity of a particular project
and also regarding the effort of a particular project.
These two terms have been used in other situations by
various authors and there is every possibility that some
better words may be coined. The authors of the present
paper feel that there is every possibility that new words
and more appropriate ones may be coined by peers in
the future. In this paper two types of activities namely
– issue activity and pull request activity have been
defined. Now, these quantities are basically ratios
which may look similar for small data and big data as
well. Ratios are many times misleading numbers
because they may show the same value for diverse
volumes. Hence this paper suggests some ways to
avoid this trap. Then there is also the attempt to define
three kinds of efforts involved in software projects
namely – commit effort, fork effort and branch effort.
What care should be taken so as to get the maximum
out of these parameters is also an area of discussion in
this paper. The paper not only defines these values but
also calculates these values for the top software
projects in GitHub so as to get an idea of what these
values may be for top projects. The authors have tried
to compare these values for the software projects listed
here and have deduced inferences from this objective
analysis. It has been seen that almost all the projects
have similar patterns and this makes the present
research all the more interesting. This work also
highlights the significance of such a kind of study and
hints at the possibility of relating the quantitative study
to the qualitative study of software projects. It makes
special remarks on the possibility of betterment of
engineering techniques using such a study. After
inferences have been drawn, the paper discusses the

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 53 Volume 8, 2023

future scope of this research and points out the areas
that could help to enrich the understanding of
parameters defined here.

2 Literature Review

A number of authors have written on the subject of
software repositories of GitHub. Many have
highlighted the tremendous potential of this platform.
This platform was first developed for collaborative
development. Later version control also was
incorporated and this made GitHub extremely popular
and useful specially for open-source software
development. The most significant work that needs
mention is the study by Padhey et. al. [3] in which
there has been a discussion about the participation in
the development process of open-source software
projects. This paper has provided the basic motivation
to explore Github projects and has also shown that
such data is extensively available on Github. This
paper has discussed the fork and pull model and has
suggested the number of forks and pulls can serve as
the basis of quantitative analysis of the growth of
software. The only thing that can enhance the study is
the historical data of forks and pulls that can lead to a
possible analysis of the different projects with respect
to their growth in quantity. It is this paper that has
provided the motivation to study the ratio between the
number of open issues and number of closed issues.
Another parameter that has been discussed in the
present paper is also motivated from Padhey et. al. [3]
and that is about the ratio between the pull requests
open to the pull requests closed. The current paper
discusses the manner in which this data can be
interpreted. Similarly, another parameter that has been
discussed here is the average rate of closing of pull
requests. It must be said that the chief idea behind
using pull requests of Github is something which has
been borrowed from the work of Padhey et. al. [3]
although the interpretation by the authors of the current
paper is relatively novel and looks to update the state
of art.

It goes without saying that understanding the behavior
of the community and the involvement of people in the
projects can help understand the health of the project
and that has been acknowledged in the paper published
by Hata et. al. [4] which stresses on the fact that there
are studies that show that ‘sustainable open-source
communities’ have to be explored in order to better
understand the organi9sational structure of open source
software projects to drive them forward.

Tamburi et. al. [5] has demonstrated that there can be
quite a lot of research in the best practices of

organization, research of social network and also by
considering different kinds of models, different types
of theories, the characteristics of different open source
software projects. There also has been stress laid upon
‘social aspects’ of software projects such as member
activity (Gamaleilsson et. al. [6] and Schweik et. al.
[7]). These works show that there was a time when
people had a kind of feeling that there should be a
method of understanding and measuring this activity.
The reason for this is quite obvious. There was an
underlying concept building up and that was what the
authors of the present paper have often stated with
confidence that the growth of software projects and
more so, the growth of open-source software projects
have to be viewed as linked to the quality of the
projects.

Many engineers and analysts felt that this socialization
did not attach much importance to the overall quality
of the software project. But this idea came out to face
serious challenges because there have been the gradual
collapse of open source software projects such as
Softonic due to the lack of increase of volunteers who
could steer the project and maybe that could be
determined by measuring the activity as the authors
have attempted to do in the present paper.

Tamburi et. al. [8] has made an attempt to present an
automated tool called the Yoshi which stands for
yielding open-source health information. This tool is
able to measure what may be called the open-source
community health status. It also “associates a
community pattern of organizational structure types”
[8]. The state of art however fails to highlight the
activity of the organization and as the authors of the
present paper believe without the quantitative
measurement of activity of those involved and the
analysis of the same, very little can be achieved in
terms of actually realizing in the direction of
quantitative growth. As a result, the present paper
focuses with greater details on the submission of
patches and number of commits as a measurement of
one form of activity. Nevertheless, there are other
forms such as bug fixing and documentation. And
these activities too in no way contribute any less to the
enhancement of the quality of the software project
quality, the authors have decided to make these
parameters areas of future study and research.

3 Methodology

A study of the document published by GitHub named
‘The State of the Octoverse’ [9], we find many
interesting things that can help study the quantitative
growth of software projects in GitHub repositories.

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 54 Volume 8, 2023

GitHub publishes this document every year. Going
through the document published in 2019 we have a list
of the twenty most popular software projects in terms
of the number of contributors. We find ten projects
having more than twenty thousand contributors. This
clearly shows that the number of contributors has
really a lot to do with the success of such software
projects. The authors decided to take up this list and
look into the GitHub site itself and dig up more
interesting data about these software repositories.
GitHub itself is a rich source of data about many
repositories and there are well documented techniques
about how all this data can be recovered from the site.
Hence GitHub’s documentation worked as a
motivation for more data collection and further
analysis.

Working according to the methods available on the
documentation of GitHub about how data can be
collected about various software repositories, the
authors proceeded to collect data about the ten
software projects that were mentioned in the document
titled State of Octoverse published for the year 2019.
Data about the following parameters were collected
while studying these software projects – open and
closed issues, open and closed pull requests, total
number of months the software project is working for,
total number of commits, total number of forks, total
number of branches, etc. On the basis of all this
collected data, the following ratios were formulated
and derived:

1. Ratio between the issues closed to the total
number of issues for a particular project

2. Ratio between the pull requests closed to the
total number of pull requests for each project

3. Ratio between the number of forks to the
number of contributors in each project

4. Ratio between the number of branches to the
number of contributors in each project

5. Ratio between the number of commits to the
number of contributors in each project

It is necessary to take a look at the interpretation about
these different quantities mentioned above. The ratios
can be interpreted in the following manner:

1. The ratio between the issues closed to the total
number of issues submitted gives an idea about the
working of the software project with respect to the
end users. We know that the issues submitted are
mostly done by the end users of the software. It is
not that the developers do not submit issues. But
mostly the developers would tend to work on the
code itself and submit patches. Hence it would not
be seriously wrong to assume that the matter related

to issues submitted in a software project is largely
related to the activity of the end users. Now it is
quite normal that a very active project would have a
high number of end users and that would also be a
very good cause behind the popularity of the
project. But more the number of users, more is the
number of suggestions that come in. Of course, all
issues are not bugs, and many of the issues would
get closed without the need to work upon. Still, it
goes without saying that a good project would have
people in it readily attending to all the issues filed
and responding to them as soon as possible. Hence
we can say that this ratio is in a way an indication
of the activity of the software project with relation
to its end users. We may call this parameter as issue

activity.
2. The next ratio is between the number of pull

requests closed to the total number of pull requests
submitted. Now, the pull requests are not much of a
thing for the end users to get involved into. Rather,
pull requests are more or less concerned with
developers. It is through pull requests that the
developer or the contributor in the project actually
asks for code or patch or documentation or anything
else to be merged with the project. The workflow is
such that contributors open pull requests and people
in the project who are authorized to review and
merge these pull requests will go through the details
of the content in the pull request and after adequate
review will decide to either merge, or reject or
communicate for further clarifications with the
concerned developer. We can say that pull requests
are the heart of GitHub workflow and they indicate
the activity of development work or contributions to
the project. Hence this ratio is different from the
first and of a separate indicative measure. This ratio
also indicates activity about the project but this is
an activity not related to the end users but more or
less related to the contributors of the project.
Hence, we may call this parameter as pull request

activity.
3. The third ratio is the indication of how much work

is done by an average contributor. Actually, the
authors of the present paper haven’t differentiated
between the different types of contributors to the
project. There may be official contributors and
other contributors. Hence the number of
contributions needs to be judged from various
angles. The first one is the ratio between the
number of commits to the total number of
contributors in the projects. A commit is a kind of
timestamp for the project, when the contributor
feels that a part of the work is done. So these are
tiny bits and pieces of work and may indicate how

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 55 Volume 8, 2023

much effort is being spent in the project as a whole.
The number of commits per contributor may not be
a very good authenticated data, but it does give an
idea about the activity of the project as such with
respect to each contributor in the project
irrespective of whether the contributor is a person
within the project or whether the contributor is from
outside the project. As such we may call this
parameter as commit effort of the project.

4. Similarly, we have considered the ratio between the
number of forks to the number of contributors.
Now, forking is a very important activity. A person
may fork a particular project for a wide number of
reasons. It may be for personal or separate use, it
may be to study the code and the project itself or
may be to work upon it, hack through it and
contribute to it. Whatever may be the case, forking
is mostly done by people who are not in a way
officially attached to the project. Now arguably,
forking may not lead to anything very substantial
and many times there are forks that do not matter
much. Still, one thing is very certain. A person
would fork a project only when the person is in
some way or the other attached to some interest
with the project. And hence forking indicates the
general interest of not so novice people about the
project. We may say that this ratio actually is a
benchmark of interests about the project. As such,
we may call this parameter as fork effort of the

project.
5. Lastly, we have the ratio between the number of

branches of the project to the total number of
contributors to the project. Work on a branch is
mostly done by people who are officially related to
the project. This is the main reason why the number
of branches has to be considered separately from
the number of forks. The number of branches of the
project shows the activity of the project’s internal
contributors. The workflow is that there is a master
branch, and whenever a new thing has to be tried
out, it is not done in the master branch, rater, a new
branch is created and all the modification is done in
that branch. GitHub workflow urges not to work
directly on the main branch or the master branch
even in the case of forks. So we may call the
number of branches divided by the number of
contributors in the project as a measure of branch

effort of the project.

Having followed the following methods and dealt
with the parameters in detail, it is time to take a
look at the data available through this exercise and
try to come to some proper conclusions.

Projects issues issue
activity closed open

microsoft/vscode 91403 5222 0.95
MicrosoftDocs/azure-docs 39041 3410 0.92
Flutter/Flutter 34948 7765 0.82
Firstcontributions/first-
contributions 215 22 0.91
tensorflow/tensorflow 23710 3751 0.86
facebook/react-native 19256 793 0.96
kubernetes/kubernetes 33958 2025 0.94
DefinitelyTyped/DefinitelyTyped 3423 3400 0.50
ansible/ansible 26470 1531 0.95
home-assistant/core 15059 1016 0.94

The issue activity clearly shows a threshold value of
0.8 for most of the projects. Only for one project
namely definitely typed the issue activity falls below
the threshold value. We can see that the value is about
0.5 for this particular project. This can be related to the
nature of this software project. Since it contains
TypeScript type definitions, is there little scope for
issues to surface?

Projects

pull

requests

pull
reques
t
activit
y

close

d

ope

n

microsoft/vscode 7614 231 0.97

MicrosoftDocs/azure-docs
1933
5 190 0.99

Flutter/Flutter
2217
8 183 0.99

Firstcontributions/first-
contributions

2999
3 122 1.00

tensorflow/tensorflow
1508
9 199 0.99

0,00
0,20
0,40
0,60
0,80
1,00
1,20

issue activity

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 56 Volume 8, 2023

facebook/react-native 9353 237 0.98

kubernetes/kubernetes
5764
7 878 0.98

DefinitelyTyped/DefinitelyTy
ped

4020
7 237 0.99

ansible/ansible
4293
5 509 0.99

home-assistant/core
2322
1 185 0.99

The pull request activity shows a threshold value of
0.95 to 1 for almost all the projects. This is a very
interesting trend because it points towards the fact that
good projects should have similar trends in pull
requests. Pull requests being an important stage of
collaborative software development, and that too very
much of the open source type, this data is really very
significant.

Projects

comm

its

Contribu

tors
com
mit

effort in 1000s

microsoft/vscode 70260 19.1 3.68
MicrosoftDocs/azure-
docs

62847
5 14 44.89

Flutter/Flutter 20346 13 1.57
Firstcontributions/first-
contributions 6838 11.6 0.59
tensorflow/tensorflow 94848 9.9 9.58
facebook/react-native 20905 9.1 2.30
kubernetes/kubernetes 93927 6.9 13.61
DefinitelyTyped/Definit
elyTyped 70952 6.9 10.28
ansible/ansible 50626 6.8 7.45
home-assistant/core 29244 6.3 4.64

If we remove the second entry from the list which is a
project about documentation really, we may take a
rough threshold value of about 1.5 for the remaining
projects. Commits for documentations are bound to be
more because documentations undergo updating more
frequently compared to the project itself.

Projects forks

contribut

ors fork
effo

rt

in

1000s in 1000s

microsoft/vscode 16.2 19.1 0.85
MicrosoftDocs/azure-docs 11 14 0.79
Flutter/Flutter 13.9 13 1.07
Firstcontributions/first-
contributions 28.9 11.6 2.49
tensorflow/tensorflow 82.6 9.9 8.34
facebook/react-native 19.9 9.1 2.19
kubernetes/kubernetes 25.2 6.9 3.65
DefinitelyTyped/Definitel
yTyped 22.5 6.9 3.26
ansible/ansible 19.6 6.8 2.88
home-assistant/core 11.4 6.3 1.81

0,80

0,85

0,90

0,95

1,00

1,05

pull request
activity

0,00
5,00

10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00

commit effort

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

fork effort

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 57 Volume 8, 2023

Barring one project the threshold value may be taken
as near to unity. In a few cases it is just below 1 (about
0.8). In other cases, it is a little over 1. The data for
Tensorflow shows a sharp spike upwards. Its value
stands oddly different. However this is understandable
because this project is mainly for machine learning and
from the recent trends in the area of machine learning,
we find that people have opted to fork this project in
order to use it in the main.

Projects
branc

hes

contrib

utors

in 1000s

normal
ised

branch
effort

 microsoft/vscode 235 19.1 1.23 MicrosoftDocs/azure-
docs 43 14 0.31
Flutter/Flutter 77 13 0.59 Firstcontributions/first
-contributions 1 11.6 0.01
tensorflow/tensorflow 47 9.9 0.47
facebook/react-native 72 9.1 0.79
kubernetes/kubernetes 42 6.9 0.61 DefinitelyTyped/Defi
nitelyTyped 105 6.9 1.52
ansible/ansible 44 6.8 0.65
home-assistant/core 61 6.3 0.97

This parameter looks somewhat out of sorts and does
not seem to be a suitable thing to consider for
quantitative growth of software projects as it does not
point towards a possible threshold value. This seems to
be the only quantity defined in this paper that does not
seem to show any definite interesting trend. Otherwise
the rest of the parameters have strikingly similar
values.

4 Conclusions

What are the conclusions that we may draw from the
above set of data? We may discuss the possible

conclusions point by point as they have been
elucidated above. Before doing so, it is necessary to
highlight certain areas that could lead to problems if
care is not taken while using such parameters. An
example would help to understand this point in greater
detail. Suppose we have a software project named A
that has a total of 80,000 pull requests and out of these
60,000 have been closed. Now the pull request activity
would be calculated as the ratio between the number of
pull requests closed to the total number of pull
requests. For this project named A, the pull request
activity would be 0.75. Now, suppose we have another
software project named B and, in that project, we have
a total of 10 pull requests and out of that 8 have been
closed. The pull request activity for this project named
B would be 0.8. Looking only at this data, that is, pull
request activity of A is 0.75 and pull request activity of
B is 0.8, one may be inclined to believe that the project
B is in a better position than project A. However, the
pull request activity ratio for B has been calculated
using far a smaller number of pull requests as
compared to A and so the conclusion that B is doing
better than A is a misjudgment. To avoid such
problems, it would be better to look at a project and
analyze its pull request activity or issue activity only
when it has crossed a certain number of pull requests
or a certain number of issues. In this paper the authors
have dealt with those projects which have a large
number of pull requests and issues. Most of the
projects discussed here have crossed ten thousand
issues or ten thousand pull requests. There are a few
that do not fit these criteria. Still, they have been
discussed because they feature in the list of GitHub’s
top ten software projects of 2019.

1. The first data is about issue activity. As we have
discussed to some extent in the methodology
section, the issue activity is something to do with
the users in general. We may take this parameter
as an indicator of how common people both
technical and non-technical are getting interested
about the project in general. We have seen from
the table and the following graph that the values
for issue activity for almost all the projects, better
to say, for all projects except one is above 0.8.
Whether this value can be taken as a threshold
value is something that is worth debating. Also, it
is worth debating about the significance of this
parameter which we keep for some future
discourse.

2. The second parameter that has been discussed
here is the pull request activity. This indicates
activities of the developers. The value of this
parameter is quite high for all the projects listed

0,00
0,20
0,40
0,60
0,80
1,00
1,20
1,40
1,60

branch effort

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 58 Volume 8, 2023

here. It is almost 0.95 and above. Hence, we may
suggest that the sign of a quantitatively steady
project is one having pull request activity around a
value of 0.95. Moreover, we have discussed this
point before, that the projects listed here are the
best so far as the number of contributors are
concerned. As already discussed, most of the
projects mentioned here have crossed the
benchmark of ten thousand pull requests that we
have set over here. There are also some projects
that have crossed much bigger numbers of pull
requests than only ten thousand. Hence, the value
0.95 is a good value to believe in.

The other parameters, that is, effort parameters are
basically things calculated with respect to unit
contributors and they may not pose such a serious a
problem whether the project is small or large. This is
because even if the project is small the effort of the
contributors cannot be undermined. Say for example a
certain project named X has 5000 forks and 2500
contributors. The fork effort for this project is the
number of forks per unit contributor and that would
amount to 2. Now, suppose there is another project
named Y and it has 30 forks and 10 contributors. For
this project Y the fork effort is 3. Can we undermine
the effort of the contributors in Y simply because it
has a smaller number of forks and a smaller number of
contributors? The authors feel that the total number of
contributors or the number of commits, branches and
forks may not be taken into consideration while
evaluating the effort parameters. Nevertheless, in the
present scenario, we have taken large projects, not
because it was essential from the sampling point of
view, but because these are the top projects in GitHub
and it was necessary to study their quantitative
features. Based on the data of efforts from the top
GitHub repositories we may draw the following
inferences:

1. The commit effort will give an idea about how
effectively the contributors are getting involved in
the project so far as developing the content of the
project is concerned. It is not necessary that all
patches or other content committed are for
improving the bugs or other defects. A big
number of commits will be for adding features or
improving the state of art of the project. Whatever
may be the case, commits aim to improve the
quality of the software project as a whole. Hence
the effort of the developer in commits is an
important thing to watch out for in a particular
project. Looking at the data in this paper about the
commit efforts of the top ten GitHub projects of
2019, we find that this value is almost one for all

the projects, It is definitely more than 0.95. We
may say that for each contributor in these projects
there is at least one commit. We may take this as a
sign of good health of the software project and
may take it in this manner that in order to become
a good rated software project we have to keep this
value to at least one . Here, we have to point out a
word of caution. That is, a good project should
have a commit effort of at least one value equal to
one. But it may not be true the other way round.
That is, if any project has commit-effort value
equal to 1, it does not automatically mean that it
will be a good project. Like, suppose there is
some project P having 2 contributors and 2
commits. Here also the commit-effort is 1, but
only that does not take it to the category of the top
ten projects mentioned in this paper. Because, the
number of commits and the number of
contributors is very small and insignificant. What
may be the threshold value of number of
contributors or number of commits that would be
sufficient to decide whether commit-effort of 1 is
suitable to judge a particular project is a matter of
discussion and we leave that to future scope of
research.

2. Looking at the data of fork-effort we find that this
is also almost equivalent for the top ten projects.
Only one project has a different value. The value
of this parameter for the remaining nine is around
and above 1. As we have already discussed
earlier, this parameter may be an indication about
the interest of people in the software project. If the
project is hosting some code, then this interest is
definitely in the code of the project. Because
forking it ultimately means creating a clone to
work upon. Many would like to fork simply for
the purpose of studying the code. Yet that also is a
kind of interest. The authors feel that there should
be a parameter for measuring this interest in the
project and for that the fork effort may be an
option that can be considered. Now, the fork-
effort of 1 means there is at least one fork per
contributor. Again similar to the situation of
commit-effort, the fork-effort has to be around 1
for a good project, but the fork-effort value being
1 simply does not imply that the project is a good
one. Here too, there should be a minimum number
of contributors to decide whether fork-effort can
decide the level of quantitative growth or further
even the quality of the project. The authors feel
that this issue is beyond the scope of this paper
and have thus decided to pass over this to some
future scope of study.

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 59 Volume 8, 2023

3. The data for the branch-effort is different from all
that we have discussed so far. Branches are
official copies of the repositories that are created
to work upon something new. We find that the
values of branch-efforts of different projects are
significantly different from each other. This
suggests that the branch-effort is largely
dependent on the nature of the project while the
other parameters namely – commit-effort and
fork-effort are largely independent of the nature of
the project. Since branch-effort is to a great extent
dependent on the nature of the project, we may
not use it as a yardstick to determine the
quantitative growth or for that matter the quality
of the software project. This then takes us to the
important discussion about whether this parameter
may be of any use at all. The authors feel that if
the software projects are grouped into categories,
then, this parameter may be more meaningful and
may throw better insight about the quantitative
character of the software project. This too may be
covered in some future discussion.

 5 Significance of study

This study is related to the quantitative nature of
software projects. The quantitative study is significant
for several reasons:

1. It helps to understand the pattern of growth of
software projects. In collaborative projects,
collaborators come together to share their skills and
develop projects. The project maintainers had a
manner of indifference to who is getting involved
and to what extent the person contributed to the
project. However as more and more professionalism
go into these projects and they come out of the
ambit of simply the playground of some interested
people, as more and more such projects start
playing important roles in the market, engineers are
confronted with the obvious question – what should
be the engineering techniques, methods, models for
such projects. At such a juncture, study of such
parameters are the key to understanding whether
things are going along the desired path, and if not
then decisions may be taken to bring things under
control.

2. The authors are of the belief that quantitative
changes lead to qualitative changes. So, the changes
in quantity however imperceptible they may seem,
in the right direction may affect the quality of the
software. This seems to be intuitively evident from
what we have seen from the data presented in the
present paper. We were discussing the top ten
projects of GitHub in the year 2019. There can be

little doubt about the fact that the success of these
projects is largely due to their better quality and that
means these are arguably the best quality software
projects around for that particular span of time. We
are of course speaking of quality in general without
referring to any sort of particular metric of quality.
Popular software is objectively better in quality,
else why should they be popular? So we may safely
assume that the list of software projects mentioned
in the 2019 edition of ‘The State of the Octoverse’
is popular and hence of good quality. Now that
being a common thing with all of them, we can
relate this feature to the quantitative parameters that
we have stated here. Most of these projects have
similar values of issue activity, pull request activity,
commit-effort and fork-effort. So the significance
of the present research paper lies in the indication
towards the fact that quantitative parameters may be
in some way related to the quality of software
projects and the two may be studies in their
dialectical relationship.

3. The authors have published primary data related to
important software projects which may be used in
the future for other kinds of study and research.

4. Any research paper that defines new metrics ought
to be used seriously for further study. New metrics
are important because they help to enrich the state
of art and of the perception about the subject in
general. It also does enrich the literature related to
software engineering, to system analysis and
design. It has the potential to open up a plethora of
future scope of studies. What this paper has in store
for the future researcher is highlighted in the
subsequent section.

6 Future Scope

Although a comprehensive discussion has been
presented about some parameters on the activity and
effort in software projects, there are many things that
have to be dealt with in the near future to fully
appreciate the discussion that has been conducted in
this paper. For a more thorough and in depth
understanding of the parameters discussed here, and
also for their greater applicability future research
options are necessary. The authors have therefore
decided to outline some such points that may help in
such a kind of study. They are as follows:

1. We have seen that the parameters such as commit-
effort and fork-effort are one sided. That is, a good
project may have a commit-effort and fork-effort of
value equal to 1 but this value by itself doesn’t
guarantee that the project is good. We have seen
that there is the need for determining a threshold

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 60 Volume 8, 2023

value of the number of contributors so that these
parameters may actually work as suitable
benchmarks. By this we mean that if a project has a
certain minimum number of contributors then
commit-effort and fork-effort values may help us
decide whether a project is quantitatively on the
right track, or even if the project is a good one.

2. We have seen that the data of branch-effort is not
such that it gives us a value independent of the
nature of the software project. It does not give us a
value which will simply help us to determine
whether the project is up to the mark or not. In this
direction, what may be done is that the software
projects may be divided into separate categories and
then comparison of branch-effort may be performed
and comparisons made in each category to see
whether there is any specific pattern of interest or
not. The authors feel the need of a separate paper to
look into this matter. There is every possibility that
the same category of software projects will have the
same type of branch-effort values.

3. So far, the ratios haven’t taken the time factor into
consideration. Hence, we are not in a position to
differentiate between two projects having similar
values of activity and effort but are working for
different time intervals. Say, we have two projects
A and B having the same value of pull request
activity or issue activity. Even though they might
have the same values of commit-effort and fork-
effort. This may make one conclude that the
software projects are of the same quantitative
nature, or even of the same quality to a particular
extent. But if these two projects have been in
operation for different intervals of time. Suppose
project A has been around for 30 months and
project B has been around for 60 months. Then,
should we still treat them as of similar quantitative
nature? The authors feel that there should be some
parameter that works around the concept of time
and this again can be something for future study.

References:

[1] https://octoverse.github.com/

[2] https://docs.github.com/en/github

[3] Padhye, Rohan & Kumarasamy Mani, Senthil
Kumar & Sinha, Vibha. (2014) A study of external

community contribution to open-source projects on

GitHub. 10.1145/2597073.2597113. (ResearchGate)

[4] Hata H, Todo T, Onoue S, Matsumoto K (2015)
Characteristics of sustainable oss projects: A
theoretical and empirical study. In: Proceedings of the
8th international workshop on cooperative and human
aspects of software engineering, CHASE ’15. IEEE
Press, Piscataway, pp 15–21.

[5] Tamburri, D.A., Palomba, F., Serebrenik, A. et al.
Discovering community patterns in open-source: a
systematic approach and its evaluation. Empire
Software Eng 24, 1369–1417 (2019).
https://doi.org/10.1007/s10664-018-9659-9 (Springer)

[6] Gamalielsson J, Lundell B (2013) Sustainability of
open source software communities beyond a fork: how
and why has the libreoffice project evolved? J Syst
Softw 3(11):128–145. https://doi.org/10.1016/j.jss.
2013.11.1077

[7] Schweik CM (2013) Sustainability in open source
software commons: lessons learned from an empirical
study of sourceforge projects. Technol Innov Manag
Rev 3:13–19. http://timreview.ca/article/645

[8] Tamburri DA, Lago P, van Vliet H (2013a)
Organizational social structures for software
engineering. ACM Comput Surv,46(1):3,1–3,35.
https://doi.org/10.1145/2522968.2522971

[9] https://octoverse.github.com/2019/

Ekbal Rashid
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 61 Volume 8, 2023

https://octoverse.github.com/
https://docs.github.com/en/github
https://doi.org/10.1016/j.jss.%202013.11.1077
https://doi.org/10.1016/j.jss.%202013.11.1077
http://timreview.ca/article/645
https://octoverse.github.com/2019/

