
Quasilinear-Time Search and Comparison for Sequential Data

ILHAN KARIĆ, ZANIN VEJZOVIĆ

Faculty of Information Technologies

University of “Džemal Bijedić”

Sjeverni logor bb 88104 Mostar

Bosnia and Herzegovina

ilhan.karic@edu.fit.ba, zanin@edu.fit.ba

 http://www.fit.ba/

Abstract: - This paper proposes a new algorithm for the evaluation of similarity between two sequences

in quasilinear time. It describes the theoretical, practical and implementational aspects of the

algorithm. The proposed method is a new approach dedicated to the computation of sequential

similarity in contrast to other methods like the Jaccard Index which although designed for the

computation of similarity of sets have been frequently used on sequences. The method is generalizable

and applicable to any form of sequential data of a finite alphabet (binary files, DNA sequences,

natural language etc.)

Key-Words: - Sequence Similarity, Comparison, Contextual Similarity, Quasilinear-Time Complexity

1 Introduction
Evaluating the similarity of two sequences is a

standard computer science problem and has a wide

area of use. A great deal of applications, from

search engines to document ranking, from gene

finding to prediction of protein functions, from

network surveillance tools to anti-virus programs

critically depend on analysis of sequential data. [1]

We will describe the matching of two sequences

as well as the search process for the closest

matching sequence from a pool of sequences which

appeared to be the bottleneck of other methods like

the Jaccard Index. We are also going to explain the

naïve implementation which would directly follow

from the mathematical model and optimizations, for

which we have provided proof in the same paper,

which will reduce the time complexity for both

sequence comparison and sequence matching down

to quasilinear time. In the end we will provide our

benchmarks with data collected during the research.

2 The Problem
The main performance issue with sequence

matching proved to be the fact that known methods

didn’t perform well on measurements made on the

union of two or more sequences which are not

directly correlated. This is mainly because those

methods were designed to evaluate the similarity of

sets, not sequences, meaning that the data must be

either sorted in some way or split up into smaller

logical chunks to reduce the time required to find

the closest match. Even if the initial similarity

function was linear, the search for the closest match

would have to be quadratic because the function

would have to be performed for each set

individually. The contextual similarity function

proved to be of quasilinear-time complexity for both

comparison and matching of sequences.

3 The Function
The basic idea behind the concept lies in one of

the most important properties of a sequence, the

order of items within it. The second property, the

content, will be awarded in a way where it won’t

matter as much as the order or position where it is

located. The best idea is to imagine the initial

sequence as a set of characters (sentence) and the

second as a text. The goal is to score how relevant

the text is given the first sequence of characters.

From this point on, the first sequence (sentence) will

be denoted as 𝑁 and the second (the text) as 𝑀.

The probability of 𝑁 being found as a

subsequence of 𝑀 due to sheer coincidence (without

having any contextual relation with it) decreases

exponentially as the length of 𝑁 increases. We will

apply this as a heuristic although it has some deep

roots in linguistics due to the power law and the

Zipfian distribution. [2] This means that we’re going

to award the appearance of a subsequence of 𝑁

within 𝑀 based on the length of the subsequence,

naming it shared context:

Ilhan Karić, Zanin Vejzović
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 161 Volume 2, 2017

mailto:ilhan.karic@edu.fit.ba
mailto:zanin@edu.fit.ba
http://www.fit.ba/

δ(𝑁, 𝑀) = ∑ ∑|𝑁𝑖𝑗⋂ 𝑀|

|𝑁|

𝑗=𝑖

|𝑁|

𝑖=1

(1)

We are summing up the lengths (cardinalities) of

all possible subsequences of 𝑁 found in 𝑀 thus

rewarding the position and order rather than the

actual number of matches. We don’t pay attention to

how many times a certain subset occurs to avoid

“is”, “the”, “a” and similar words to add up on

quantity rather than the way they create contextual

meaning.

The problem with this measurement is that it has

no upper bound thus grows infinitely. This would

result in sequences which are generally larger to

also be “more similar” than sequences with a

smaller length which is not true. To solve this

problem we must normalize our function by

dividing with the coefficient 𝑇𝜎 which represents the

total score that can be achieved under the

assumption that the first sequence is a proper

subsequence of the second, meaning that 𝑁 ⊆ 𝑀. In

this case we can compute 𝑇𝜎 directly as shown in (2)

below:

 𝑇𝜎 = ∑
k(k + 1)

2

n

k=1

=
n(n + 1)(n + 2)

3!
 (2)

Assuming that 𝑛 is replaced by the length of our

first sequence 𝑁 we can express our normalization

coefficient as the following binomial:

 𝑇𝜎 = (
|N| + 2

3
) (3)

Now, once we have normalized our initial

function (1) we arrive at the final expression for the

contextual similarity:

δ̅(𝑁, 𝑀) =

1

𝑇𝜎
∑ ∑|𝑁𝑖𝑗⋂ 𝑀|

|N|

𝑗=𝑖

|𝑁|

𝑖=1

(4)

This is the normalized function and measures the

contextual relation between two sequences. The

domain of the function (4) is 0 ≤ δ̅ ≤ 1 where the

similarity (and probability of non-random

relationship between the two sequences) is

increasing with δ̅ respectively. When the entire first

sequence is a subsequence of 𝑀, the contextual

similarity δ̅ = 1. In the case where the two squences

are disjunctive, δ̅ = 0.

4 Optimizations
We will stop to review the naïve implementation

which would follow directly from the mathematical

model. The first thing to notice is that if our second

sequence 𝑀 does not contain the subsequence 𝑁𝑖𝑗

there is no need to check for 𝑁𝑖(𝑗+1) For instance, if

N = “ABC” and M = “AXBC” we will find that M

does not contain “AB” thus it is redundant to check

for “ABC” and we can stop further computation on

the given subsequence of N.

The second optimization addresses the problem

where 𝑁 = 𝑀 or in general when 𝑁 contains long

subsequences of 𝑀 resulting in many nested

iterations. If we look closely we will notice that our

normalization coefficient can be used in a way

which will lead to us avoiding re-doing done work.

Consider the following example where N =

“AAAAxA” and M = “AAAAAA”. Once we’ve

evaluated the sum of all lengths of all subsequences

of N up to “x” (“AAAA”) we can agree that

repeating the same process for (“AAA”) is a waste

because we already know that they exist within M

so we can skip that part and add (|N|−1+2
3

) directly.

This will further reduce the gaps between the worst,

average and best cases.

The third optimization would be to use the

unique property of the contextual similarity

function that allows us to review two or more

sequences at once by concatenating them. These

sequences can be picked at random and don’t have

to be correlated, meaning that we could merge four

sequences into two super-sequences and review two

sequences at once. Note that we should add one

character as a separator to avoid creating

subsequences which weren’t there initially. For this

we should use a character which is not part of the

alphabet. Now, we can compare our initial sequence

𝑁 with, for example, two super-sequences 𝑀𝑝1 ∪

𝑀𝑞1 and 𝑀𝑝2 ∪ 𝑀𝑞2 in two computations rather

than four. The super-sequence which scores more

has an increased probability of one of its

subsequences to be related to 𝑁. Once we decide

which super-sequence probably contains our

information, we can slice it in two halves and repeat

the process until only one item is left. To keep the

information about the initial groups we will use a

list where each item is a known sequence M and

only do grouping logically, based on indexes,

performing a context-driven dichotomic search. This

way, instead of doing 1024 computations for 1024

sequences we only have to do 2 log2(1024) = 20

Ilhan Karić, Zanin Vejzović
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 162 Volume 2, 2017

5 Theoretical Complexity
In this section we’re going to discuss the worst,

best and average time complexity of the optimized

algorithm.

The worst case occurs when the two strings we

are comparing are equal. In this case the outer loop

would only iterate once (due to the second

optimization) and the inner loop would iterate N

times. For this calculation, we’re assuming the

Boyer-Moore string search algorithm which is

known to have a linear average time complexity.

This would give us the worst case time complexity

of 𝑂(1 ∗ 𝑛 ∗ 𝑛) = 𝑂(𝑛2) so we can say that our

algorithm, in the worst case, will execute in

quadratic time.

The best case occurs when the two strings that

we are comparing are disjunctive thus the outer loop

would iterate N times while the inner loop would

iterate once per outer iteration and the string search

operation would be performed on a single character

every time giving us the best case time complexity

of: 𝑂(𝑛 ∗ 1 ∗ 1) = 𝑂(𝑛)

The average case, unlike the previous two, is

more difficult to evaluate. Since we don’t know how

the input will look like, we’re assuming two random

sequences each of length N. The actual character at

any position is picked uniformly at random from an

alphabet of size q. The probability of picking any

specific character is 𝑝 =
1

𝑞
. By picking two fixed

positions, we can say that the probability for m

consecutive matches, starting at position i in the first

sequence and starting at position j in the second

sequence is 𝑝𝑚
.

Let 𝑥𝑖𝑗(𝑚) be a random variable with the value 1

if starting at position i and position j there is a

match of length m and 0 otherwise. It takes on 1

with the probability 𝑝𝑚 and 0 with the probability

1 − 𝑝𝑚. Counting all matches we can say that:

 𝐶𝑚 ≡ ∑ ∑ 𝑥𝑖𝑗(𝑚)

𝑛

𝑗=1

𝑛

𝑖=1

(5)

Remember that 𝐶𝑚 represents the total number

of pairs with starting positions i, j that have a match

of length m. We're interested in the expected

average value 𝐸(𝐶𝑚):

𝐸 (∑ ∑ 𝑥𝑖𝑗(𝑚)

𝑛

𝑗=1

𝑛

𝑖=1

)
(6)

Due to the linearity of expectation we can take

the sum of the expected values instead of the

expectation of the sum so we can define 𝐸(𝐶𝑚) as:

𝐸(𝐶𝑚) = ∑ ∑ 𝐸 (𝑥𝑖𝑗(𝑚))

𝑛

𝑗=1

𝑛

𝑖=1

(7)

If we look at the expectation of 𝑥𝑖𝑗(𝑚) we can

see that: 𝐸 (𝑥𝑖𝑗(𝑚)) = 1 ∗ 𝑝𝑚 + 0 ∗ (1 − 𝑝𝑚) = 𝑝𝑚.

We can finally express the expected number of

matches in two random sequences as shown in (8):

 𝐸(𝐶𝑚) = ∑ ∑ 𝑝𝑚

𝑛

𝑗=1

= 𝑛2𝑝𝑚

𝑛

𝑖=1

 (8)

The assumption is that 𝑛 ≫ 𝑚 which means that

we don't have to account for different upper limits

of the two sums. This is how the algorithm was

designed to work so it is a good approximation for

the average case. We're interested in how 𝐸(𝐶𝑚)

behaves asymptotically as m increases.

Let r be the largest value of m such that

𝐸(𝐶𝑚) ≥ 1. Knowing what r is will give us a good

heuristic insight into knowing what the expected

longest common substring is. We arrive at the

following inequality:

 𝑛2𝑝𝑟 ≥ 1 (9)

Since r is the largest value of m such that this

holds, we must also say that 𝑛2𝑝(𝑟+1) < 1. Once

rearranged and further simplified, we express the

probability p in function of the alphabet size q as

initially and arrive at the following approximation:

 𝑙𝑜𝑔𝑞(𝑛 − 1) < 𝑟 ≤ 𝑙𝑜𝑔𝑞(𝑛)

(10)

 From this approximation we can learn about the

asymptotic behaviour of the expected length of the

longest common substring as the length of the string

n increases. A simulation has been created to help

visualise our mathematical predictions which can be

seen in Fig. 1. We have created pairs of randomly

generated sequences of the same alphabet size and

measured the longest common substring length in

function of the lengths of the two sequences. Each

data point on the scatterplot in Fig. 1. was computed

as the arithmetic mean over 1000 iterations in

order to rule out random occurances as much as

possible. We can see the results of this simulation in

the scatterplot below:

Ilhan Karić, Zanin Vejzović
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 163 Volume 2, 2017

Fig. 1. The asymptotic behavior of the growth of the

longest common substrings in function of string size.

We can see our upper and lower bounds which

give us an insight into where we expect to find our

random values.

With this approximation proven, we can finally

compute the average time complexity of our

algorithm. To simplify and leave some room for

error, we're going to take out the second

optimization from our evaluation. This means that

the outer loop structure will always iterate N times

while the inner loop, due to the first optimization,

only iterates in function of the longest common

substring which was just proven to grow

logarithmically. Since the string matching algorithm

inside the second loop only ever operates on the

longest common substrings of length log (𝑁) we can

say that the average time complexity of our

algorithm is: 𝑂(𝑛 ∗ 2 log 𝑛 ∗ log 𝑛) = 𝑂(𝑛 log2 𝑛)

It is important to note that our method allows

for measurments on the union of two or more

sequences. Since we know that binary search has a

known average time complexity of log (𝑛) the

complexity of comparing our sequence to all

existing sequences is: 𝑂(𝑛 log2 𝑛 log 𝑛) =
 𝑂(𝑛 log3 𝑛) which is still quasilinear. In contrast,

other methods such as the Jaccard Index would

perform search operations in quadratic time thus

the proposed method is faster.

Another thing to note is that the reason why our

assumption of random strings would be a good

representative for the average case is due to the fact

that both randomly generated and coherent text

follow a Zipfian distribution. [2]

6 Benchmarks
We have measured only the first and second

optimization impact on the general performance of

the algorithm. The third optimization was always

enabled to speed things up. The first three tests have

been ran for all three cases (with no optimization,

first optimization and second optimization enabled).

The first sequence N was always populated with 33

characters and each list item M was exactly 33

characters long. The list was filled with 2, 4, 8, 16..

32768 items where every item was 33 characters

long. The time was measured on each iteration.

 The first test populated the list with items

which would yield a very high similarity when

evaluated. The second test generated a list of

random items each 33 characters long, to test the

performance against random similarity. The third

test populated the list with items that would yield a

low similarity on average.

Our theory predicted that the first optimization

would reduce the execution time when the similarity

was high (worst case) and that our second

optimization would further reduce the speed gap

between the worst and best case (high and low

similarity). The results only show how each

optimization changed the algorithm performance in

the case of high, random and low similarity in data.

In the end the goal was to decrease the speed on

data sets where the similarity is high or low at the

cost of increasing the time required to process

purely random data. The algorithm was designed to

perform on data sets where we expect to have some

sort of similarity either low or high. Purely random

data, by definition, does not contain any useful

information meaning that we give our algorithm the

best chances of performing in real life cases. The

figures 2, 3 and 4 show the results of the tests.

Fig. 2. Algorithm search performance in the case of low,

random and high similarity data, without optimizations.

Remember that Fig. 2. shows time required to

find the best matching sequence and not only

compare two sequences which still appears to be

linear. This is due to the large scope of the x axis. If

we zoom in to the beginning we can see a

logarithmic curve.

Ilhan Karić, Zanin Vejzović
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 164 Volume 2, 2017

Fig. 3. Algorithm search performance in the case of low,

random and high similarity data, with only the first

optimization enabled.

Fig. 4. Algorithm search performance in the case of low,

random and high similarity data, with only the second

optimization enabled.

The last two tests have been designed to test the

asymptotic behavior of the contextual similarity

function in function of the input size and search

area. Fig.5 and Fig.6 show the results of the named

tests.

Fig. 5. Asymptotic behavior of the average time

execution in function of the length of the first sequence.

Fig. 6. Asymptotic behavior of the average time

execution in function of the number of sequences to

search through. All sequences have been generated

randomly.

7 Conclusion
We conclude that our algorithm both from the

theoretical and practical perspective is indeed

quasilinear in nature. Notice how other similarity

functions such as the Jaccard Index, Cosine

Similarity or Sørensen–Dice are different. The

Jaccard Index, for instance, can only operate on

two sets at a time meaning that to calculate the

similarity for n sets one would have to perform 𝑛2

Jaccard calculations, which would result in

quadratic time complexity. The proposed method

provides a unique scoring which awards position,

order and structure of the sequence. The algorithm

allows for a unique way of performing a dichotomic

search over inherently random and unsorted arrays

of data which allows us to quickly search, find and

match sequences based on their similarity.

References:

[1] X1. Konrad Rieck, Pavel Laskov, “Linear-

Time Computation of Similarity Measures for

Sequential Data”, Journal of Machine Learning

Research 9 (2008) 23-48 pp. 1

[2] S. T. Piantadosi, “Zipf’s word frequency law in

natural language: A critical review and future

directions”, Psychonomic Bulletin & Review,

vol. 21, 2014, pp. 1112-1130

Ilhan Karić, Zanin Vejzović
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 165 Volume 2, 2017

