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Abstract: - This paper proposes a new algorithm for the evaluation of similarity between two sequences 

in quasilinear time. It describes the theoretical, practical and implementational aspects of the 

algorithm. The proposed method is a new approach dedicated to the computation of sequential 

similarity in contrast to other methods like the Jaccard Index which although designed for the 

computation of similarity of sets have been frequently used on sequences. The method is generalizable 

and applicable to any form of sequential data of a finite alphabet (binary files, DNA sequences, 

natural language etc.) 
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1 Introduction 
Evaluating the similarity of two sequences is a 

standard computer science problem and has a wide 

area of use. A great deal of applications, from 

search engines to document ranking, from gene 

finding to prediction of protein functions, from 

network surveillance tools to anti-virus programs 

critically depend on analysis of sequential data. [1]  

We will describe the matching of two sequences 

as well as the search process for the closest 

matching sequence from a pool of sequences which 

appeared to be the bottleneck of other methods like 

the Jaccard Index. We are also going to explain the 

naïve implementation which would directly follow 

from the mathematical model and optimizations, for 

which we have provided proof in the same paper, 

which will reduce the time complexity for both 

sequence comparison and sequence matching down 

to quasilinear time. In the end we will provide our 

benchmarks with data collected during the research. 

 

2 The Problem 
The main performance issue with sequence 

matching proved to be the fact that known methods 

didn’t perform well on measurements made on the 

union of two or more sequences which are not 

directly correlated. This is mainly because those 

methods were designed to evaluate the similarity of 

sets, not sequences, meaning that the data must be 

either sorted in some way or split up into smaller 

logical chunks to reduce the time required to find 

the closest match. Even if the initial similarity 

function was linear, the search for the closest match 

would have to be quadratic because the function 

would have to be performed for each set 

individually. The contextual similarity function 

proved to be of quasilinear-time complexity for both 

comparison and matching of sequences. 

 

 

3 The Function 
The basic idea behind the concept lies in one of 

the most important properties of a sequence, the 

order of items within it. The second property, the 

content, will be awarded in a way where it won’t 

matter as much as the order or position where it is 

located. The best idea is to imagine the initial 

sequence as a set of characters (sentence) and the 

second as a text. The goal is to score how relevant 

the text is given the first sequence of characters. 

From this point on, the first sequence (sentence) will 

be denoted as 𝑁 and the second (the text) as 𝑀. 

The probability of 𝑁 being found as a 

subsequence of 𝑀 due to sheer coincidence (without 

having any contextual relation with it) decreases 

exponentially as the length of 𝑁 increases. We will 

apply this as a heuristic although it has some deep 

roots in linguistics due to the power law and the 

Zipfian distribution. [2] This means that we’re going 

to award the appearance of a subsequence of 𝑁 

within 𝑀 based on the length of the subsequence, 

naming it shared context: 
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δ(𝑁, 𝑀) = ∑ ∑|𝑁𝑖𝑗⋂ 𝑀| 

|𝑁|

𝑗=𝑖

|𝑁|

𝑖=1

 

 

(1) 

We are summing up the lengths (cardinalities) of 

all possible subsequences of 𝑁 found in 𝑀 thus 

rewarding the position and order rather than the 

actual number of matches. We don’t pay attention to 

how many times a certain subset occurs to avoid 

“is”, “the”, “a” and similar words to add up on 

quantity rather than the way they create contextual 

meaning. 

The problem with this measurement is that it has 

no upper bound thus grows infinitely. This would 

result in sequences which are generally larger to 

also be “more similar” than sequences with a 

smaller length which is not true. To solve this 

problem we must normalize our function by 

dividing with the coefficient 𝑇𝜎 which represents the 

total score that can be achieved under the 

assumption that the first sequence is a proper 

subsequence of the second, meaning that 𝑁 ⊆ 𝑀. In 

this case we can compute 𝑇𝜎 directly as shown in (2) 

below: 

 

 𝑇𝜎 =  ∑
k(k + 1)

2

n

k=1

=  
n(n + 1)(n + 2)

3!
 (2) 

 

Assuming that 𝑛 is replaced by the length of our 

first sequence 𝑁 we can express our normalization 

coefficient as the following binomial: 

 

 𝑇𝜎 =  (
|N| + 2

3
)   (3) 

 

Now, once we have normalized our initial 

function (1) we arrive at the final expression for the 

contextual similarity: 

 

 
δ̅(𝑁, 𝑀) =

1

𝑇𝜎
∑ ∑|𝑁𝑖𝑗⋂ 𝑀| 

|N|

𝑗=𝑖

|𝑁|

𝑖=1

 

 

(4) 

This is the normalized function and measures the 

contextual relation between two sequences. The 

domain of the function (4) is 0 ≤ δ̅ ≤ 1 where the 

similarity (and probability of non-random 

relationship between the two sequences) is 

increasing with δ̅ respectively. When the entire first 

sequence is a subsequence of 𝑀, the contextual 

similarity δ̅ = 1. In the case where the two squences 

are disjunctive, δ̅ = 0. 

 

4 Optimizations  
We will stop to review the naïve implementation 

which would follow directly from the mathematical 

model. The first thing to notice is that if our second 

sequence 𝑀 does not contain the subsequence 𝑁𝑖𝑗 

there is no need to check for 𝑁𝑖(𝑗+1) For instance, if 

N = “ABC” and M = “AXBC” we will find that M 

does not contain “AB” thus it is redundant to check 

for “ABC” and we can stop further computation on 

the given subsequence of N. 

The second optimization addresses the problem 

where 𝑁 = 𝑀 or in general when 𝑁 contains long 

subsequences of 𝑀 resulting in many nested 

iterations. If we look closely we will notice that our 

normalization coefficient can be used in a way 

which will lead to us avoiding re-doing done work. 

Consider the following example where N = 

“AAAAxA” and M = “AAAAAA”. Once we’ve 

evaluated the sum of all lengths of all subsequences 

of N up to “x” (“AAAA”) we can agree that 

repeating the same process for (“AAA”) is a waste 

because we already know that they exist within M 

so we can skip that part and add (|N|−1+2
3

) directly. 

This will further reduce the gaps between the worst, 

average and best cases. 

The third optimization would be to use the 

unique property of the contextual similarity 

function that allows us to review two or more 

sequences at once by concatenating them. These 

sequences can be picked at random and don’t have 

to be correlated, meaning that we could merge four 

sequences into two super-sequences and review two 

sequences at once. Note that we should add one 

character as a separator to avoid creating 

subsequences which weren’t there initially. For this 

we should use a character which is not part of the 

alphabet. Now, we can compare our initial sequence 

𝑁 with, for example, two super-sequences 𝑀𝑝1 ∪

𝑀𝑞1 and 𝑀𝑝2 ∪ 𝑀𝑞2 in two computations rather 

than four. The super-sequence which scores more 

has an increased probability of one of its 

subsequences to be related to 𝑁. Once we decide 

which super-sequence probably contains our 

information, we can slice it in two halves and repeat 

the process until only one item is left. To keep the 

information about the initial groups we will use a 

list where each item is a known sequence M and 

only do grouping logically, based on indexes, 

performing a context-driven dichotomic search. This 

way, instead of doing 1024 computations for 1024 

sequences we only have to do 2 log2(1024) = 20  
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5 Theoretical Complexity  
In this section we’re going to discuss the worst, 

best and average time complexity of the optimized 

algorithm. 

The worst case occurs when the two strings we 

are comparing are equal. In this case the outer loop 

would only iterate once (due to the second 

optimization) and the inner loop would iterate N 

times. For this calculation, we’re assuming the 

Boyer-Moore string search algorithm which is 

known to have a linear average time complexity. 

This would give us the worst case time complexity 

of 𝑂(1 ∗ 𝑛 ∗ 𝑛) = 𝑂(𝑛2) so we can say that our 

algorithm, in the worst case, will execute in 

quadratic time. 

The best case  occurs when the two strings that 

we are comparing are disjunctive thus the outer loop 

would iterate N times while the inner loop would 

iterate once per outer iteration and the string search 

operation would be performed on a single character 

every time giving us the best case time complexity 

of: 𝑂(𝑛 ∗ 1 ∗ 1) = 𝑂(𝑛)   

The average case, unlike the previous two, is 

more difficult to evaluate. Since we don’t know how 

the input will look like, we’re assuming two random 

sequences each of length N. The actual character at 

any position is picked uniformly at random from an 

alphabet of size q. The probability of picking any 

specific character is 𝑝 =
1

𝑞
. By picking two fixed 

positions, we can say that the probability for m 

consecutive matches, starting at position i in the first 

sequence and starting at position j in the second 

sequence is 𝑝𝑚
. 

Let 𝑥𝑖𝑗(𝑚) be a random variable with the value 1 

if starting at position i and position j there is a 

match of length m and 0 otherwise. It takes on 1 

with the probability 𝑝𝑚 and 0 with the probability 

1 − 𝑝𝑚. Counting all matches we can say that: 

 𝐶𝑚 ≡ ∑ ∑ 𝑥𝑖𝑗(𝑚)

𝑛

𝑗=1

𝑛

𝑖=1

 
(5) 

 

Remember that 𝐶𝑚 represents the total number 

of pairs with starting positions i, j that have a match 

of length m. We're interested in the expected 

average value 𝐸(𝐶𝑚): 

 
𝐸 (∑ ∑ 𝑥𝑖𝑗(𝑚)

𝑛

𝑗=1

𝑛

𝑖=1

) 
(6) 

 

Due to the linearity of expectation we can take 

the sum of the expected values instead of the 

expectation of the sum so we can define 𝐸(𝐶𝑚) as: 

 
𝐸(𝐶𝑚) = ∑ ∑ 𝐸 (𝑥𝑖𝑗(𝑚))

𝑛

𝑗=1

𝑛

𝑖=1

 
(7) 

 

If we look at the expectation of 𝑥𝑖𝑗(𝑚) we can 

see that: 𝐸 (𝑥𝑖𝑗(𝑚)) = 1 ∗ 𝑝𝑚 + 0 ∗ (1 − 𝑝𝑚) =  𝑝𝑚. 

We can finally express the expected number of 

matches in two random sequences as shown in (8): 

 

 𝐸(𝐶𝑚) = ∑ ∑ 𝑝𝑚

𝑛

𝑗=1

= 𝑛2𝑝𝑚

𝑛

𝑖=1

 (8) 

 

The assumption is that 𝑛 ≫ 𝑚 which means that 

we don't have to account for different upper limits 

of the two sums. This is how the algorithm was 

designed to work so it is a good approximation for 

the average case. We're interested in how 𝐸(𝐶𝑚) 

behaves asymptotically as m increases. 

Let r be the largest value of m such that 

𝐸(𝐶𝑚) ≥ 1. Knowing what r is will give us a good 

heuristic insight into knowing what the expected 

longest common substring is. We arrive at the 

following inequality:  

 

 𝑛2𝑝𝑟 ≥ 1 (9) 

 

Since r is the largest value of m such that this 

holds, we must also say that 𝑛2𝑝(𝑟+1) < 1. Once 

rearranged and further simplified, we express the 

probability p in function of the alphabet size q as 

initially and arrive at the following approximation: 

 𝑙𝑜𝑔𝑞(𝑛 − 1) < 𝑟 ≤ 𝑙𝑜𝑔𝑞(𝑛) 

 
(10) 

 From this approximation we can learn about the 

asymptotic behaviour of the expected length of the 

longest common substring as the length of the string 

n increases. A simulation has been created to help 

visualise our mathematical predictions which can be 

seen in Fig. 1. We have created pairs of randomly  

generated sequences of the same alphabet size and 

measured the longest common substring length in 

function of the lengths of the two sequences. Each 

data point on the scatterplot in Fig. 1. was computed 

as  the arithmetic mean over 1000 iterations  in 

order to rule out random occurances as much as 

possible. We can see the results of this simulation in 

the scatterplot below: 
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Fig. 1. The asymptotic behavior of the growth of the 

longest common substrings in function of string size. 

 

We can see our upper and lower bounds which 

give us an insight into where we expect to find our 

random values. 

With this approximation proven, we can finally 

compute the average time complexity of our 

algorithm. To simplify and leave some room for 

error, we're going to take out the second 

optimization from our evaluation. This means that 

the outer loop structure will always iterate N times 

while the inner loop, due to the first optimization, 

only iterates in function of the longest common 

substring which was just proven to grow 

logarithmically. Since the string matching algorithm 

inside the second loop only ever operates on the 

longest common substrings of length log (𝑁) we can 

say that the average time complexity of our 

algorithm is: 𝑂(𝑛 ∗ 2 log 𝑛 ∗ log 𝑛) = 𝑂(𝑛 log2 𝑛) 

It is important to note that our method allows 

for measurments on the union of two or more 

sequences. Since we know that binary search has a 

known average time complexity of log (𝑛) the 

complexity of comparing our sequence to all 

existing sequences is: 𝑂(𝑛 log2 𝑛 log 𝑛) =
 𝑂(𝑛 log3 𝑛) which is still quasilinear. In contrast, 

other methods such as the Jaccard Index would 

perform search operations in quadratic time thus 

the proposed method is faster. 

Another thing to note is that the reason why our 

assumption of random strings would be a good 

representative for the average case is due to the fact 

that both randomly generated and coherent text 

follow a Zipfian distribution. [2]  

 

 

6 Benchmarks 
We have measured only the first and second 

optimization impact on the general performance of 

the algorithm. The third optimization was always 

enabled to speed things up. The first three tests have 

been ran for all three cases (with no optimization, 

first optimization and second optimization enabled). 

The first sequence N was always populated with 33 

characters and each list item M was exactly 33 

characters long. The list was filled with 2, 4, 8, 16.. 

32768 items where every item was 33 characters 

long. The time was measured on each iteration. 

 The first test populated the list with items 

which would yield a very high similarity when 

evaluated. The second test generated a list of 

random items each 33 characters long, to test the 

performance against random similarity. The third 

test populated the list with items that would yield a 

low similarity on average. 

Our theory predicted that the first optimization 

would reduce the execution time when the similarity 

was high (worst case) and that our second 

optimization would further reduce the speed gap 

between the worst and best case (high and low 

similarity). The results only show how each 

optimization changed the algorithm performance in 

the case of high, random and low similarity in data. 

In the end the goal was to decrease the speed on 

data sets where the similarity is high or low at the 

cost of increasing the time required to process 

purely random data. The algorithm was designed to 

perform on data sets where we expect to have some 

sort of similarity either low or high. Purely random 

data, by definition, does not contain any useful 

information meaning that we give our algorithm the 

best chances of performing in real life cases. The 

figures 2, 3 and 4 show the results of the tests. 

 

 
Fig. 2. Algorithm search performance in the case of low, 

random and high similarity data, without optimizations. 

  

Remember that Fig. 2. shows time required to 

find the best matching sequence and not only 

compare two sequences which still appears to be 

linear. This is due to the large scope of the x axis. If 

we zoom in to the beginning we can see a 

logarithmic curve. 
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Fig. 3. Algorithm search performance in the case of low, 

random and high similarity data, with only the first 

optimization enabled. 

 

 
Fig. 4. Algorithm search performance in the case of low, 

random and high similarity data, with only the second 

optimization enabled. 

 

The last two tests have been designed to test the 

asymptotic behavior of the contextual similarity 

function in function of the input size and search 

area. Fig.5 and Fig.6 show the results of the named 

tests. 

 

 
Fig. 5. Asymptotic behavior of the average time 

execution in function of the length of the first sequence. 

 
Fig. 6. Asymptotic behavior of the average time 

execution in function of the number of sequences to 

search through. All sequences have been generated 

randomly. 

 

 

7 Conclusion 
We conclude that our algorithm both from the 

theoretical and practical perspective is indeed 

quasilinear in nature. Notice how other similarity 

functions such as the Jaccard Index, Cosine 

Similarity or Sørensen–Dice are different. The 

Jaccard Index, for instance, can only operate on 

two sets at a time meaning that  to calculate the 

similarity for n sets one would have to perform 𝑛2 

Jaccard calculations, which would result in 

quadratic time complexity. The proposed method 

provides a unique scoring which awards position, 

order and structure of the sequence. The algorithm 

allows for a unique way of performing a dichotomic 

search over inherently random and unsorted arrays 

of data which allows us to quickly search, find and 

match sequences based on their similarity. 
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