

An Accurate Tagging Algorithm in Augmented Reality for
Mobile Device Screens

DOĞA ERIŞIK, AHMET KARAMAN, GÜLFEM IŞIKLAR ALPTEKİN,

ÖZLEM DURMAZ İNCEL
Computer Engineering
Galatasaray University

Çırağan Cad. No:36 Ortaköy İstanbul
TURKEY

Doga.erisik@avea.com.tr; Ahmet.Karaman@aktifbank.com.tr; gisiklar@gsu.edu.tr;
odincel@gsu.edu.tr

Abstract: - Augmented reality (AR) is a type of virtual reality aiming to duplicate real world’s environment on
a computer’s video feed. The mobile application, which is built for this project (called SARAS), enables
annotating real world point of interests (POIs) that are located near mobile user. In this paper, we aim at
introducing a robust and simple algorithm for placing labels in an augmented reality system. The system places
labels of the POIs on the mobile device screen whose GPS coordinates are given. The proposed algorithm is
compared to an existing one in terms of energy consumption and accuracy. The results show that the proposed
algorithm gives better results in energy consumption and accuracy while standing still, and acceptably accurate
results when driving. The technique provides benefits to AR browsers with its open access algorithm. Going
forward, the algorithm will be improved to more rapidly react to position changes while driving.

Key-Words: - Labeling POI; localization; accurate tagging algorithm; augmented reality; location-based AR,
mobile augmented reality application.

1 Introduction
An augmented reality (AR) application allows us to
see the real world overlaid with digital information.
Overlaying labels or virtual objects provides with
richer experiences for individuals. AR systems
typically analyze the video stream provided by
mobile device camera in real time. They make use
of various sensors including GPS, digital compass
(magnetometer), accelerometer or gyroscope in
order to determine the position and the orientation
of the user.

In this research, a sensor-based AR application
(called SARAS) is built. The application works as
follows: the user gets the viewing angle (or framing)
within the camera to be launched in SARAS by
looking at a direction in shopping centers, on the
street or on the road (highway, city). If there are
points of interests (POIs) related to the bank in the
viewing angle (also inside framing), this
information appears as a list on the screen. If a point
is selected from the list, detailed information (such
as details of the campaign) is displayed. If the user
is in a multi-storey shopping center, floor distinction
is made by 3D effect. The main objective of SARAS
is to set a tag for each POI that is visible from the
mobile screen. The POIs are places in the world
represented by a latitude and a longitude. The labels

belonging to these points (GPS coordinates) is
superimposed in the view of the camera.
Particularly, the SARAS application works with the
POI’s of a private bank in Turkey, Yapı Kredi Bank,
namely its merchants, branches and ATMs. Each
type of POI is tagged with a different color. This
application is considered as an alternative channel
for a bank to inform its customers/potential
customers about their merchants and campaigns. In
case where there is noGPS connection (such as at
shopping malls or subway stations), the application
reads the QR code that is stuck on the shop window.
This approach is called a ‘virtual window’ in this
project.

The focus of this paper is on the tagging
algorithm that is proposed for this application. There
are different techniques for creating labels:
immediate tagging, fast tagging, map tagging and
accurate tagging [1]. In accurate tagging, users
focus on the POI from several positions, saving the
position, Azimuth and roll values. Then, lines are
traced from these positions that intersect in the same
point. The proposed algorithm does not use these
types of lines, but it uses the position and the
Azimuth value. Besides, it determines the real
location of the POI. These are the reasons why it is
considered in the accurate tagging class.

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 271 Volume 1, 2016

The rest of the paper is organized as follows.
Section 2 discusses the related work in the literature
and their differences from this one. Section 3 gives
brief explanation of SARAS application. In Section
4, the algorithm is given in detailed steps. The
results and the performance analysis are discussed
in Section 5. Finally, conclusions and future work
are given in Section 6.

2 Problem Formulation
An AR system, called LibreGeoSecial that works
both outdoors and indoors is introduced in [1]. It
allow browsing tags associated with objects of the
real world and linking media to objects. It uses GPS
and compass to recognize location and orientation
similar to our technique; but the difference is that it
makes use of these sensor values together with
image processing to improve accuracy.
In other research [2], the authors described the
important issues arising when developing an AR
system in a localization application. Then, they
introduced a system, called WorldPlus that presents
solution to these problems.

A survey on AR, in which 3D virtual objects are
integrated into a 3D real environment in real time is
presented in [3]. It is a valuable research where the
tradeoffs between optical and video blending
approaches are discussed. In another survey paper
[4], the authors described the field of AR and
several recent AR applications with their
limitations. Various challenges in providing
location-based AR have been presented in [5], and
then the engineering process for developing the core
framework has been introduced.

3 Sensor-Based Augmented Reality
Application Software (SARAS)
SARAS is built to be used in all kind of Android-
based mobile devices. The use case diagram in
Figure 1 explains the functioning of the application:

1. User wants to launch the application.
2. If the camera is working, if the device has

Internet connection, and if the battery level is
sufficient, the application is initialized.

3. Identity number information screen is shown.
User can skip this screen or identify himself/herself
to the system. If she/he identifies her/himself, she/he
access to the program as a bank customer; otherwise
as a general user, i.e., a potential customer.

4. User can filter POIs by their types or the
distance.

5. POIs are tagged on the screen.

6. If the Internet connection does not exist or it is
limited, user can choose to use the QR code of the
POI for accessing campaign information.

7. User exits from the program.

Fig. 1. Use case diagram of SARAS

4 Proposed Tagging Algorithm
The aim of the introduced responsive tagging
algorithm is to position POIs on the right point on
mobile device screen. The GPS coordinates of the
POI is assumed to be known in advance.

4.1 Finding POI’s Cardinal Direction
The algorithm considers all possible cardinal
(North, South, East, West) and intercardinal
(Northeast, Northwest, Southeast, Southwest)
directions. It is assumed to exist 360 points that the
device may head to. As there are eight different
directions, the device is said to have a vision range
of 45 points. The algorithm first tries to figure out in
which interval of 45 points that the given POI is. In
other words, the algorithm first finds the direction of
the POI. Then, the tag for this POI needs to be
positioned on the right place on the screen. The
steps of the algorithm can be summarized as
follows:

1. All tags are created to appear on the screen for
each POI in respect to determined type and distance
filter.

2. All POI tags are made invisible. (All of them
are created, because it is faster than recreating them
at each device movement.)

3. The difference between the POI’s and device’s
latitude is calculated as diffLatitude and the
difference between the POI’s and device’s longitude
is calculated as diffLongitude.

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 272 Volume 1, 2016

4. These differences are compared. If
(diffLatitude > diffLongitude), then the POI is
defined in North or South. If (diffLatitude <=
diffLongitude), then the POI is defined in East or
West.

i.If (diffLatitude > diffLongitude): If (POI’s
latitude > device’s latitude), then the POI is in
North, because it is assumed to be in the North
hemisphere and the latitude increases when going
North; otherwise the POI is in South.

ii. If (diffLatitude <= diffLongitude): If (POI’s
longitude > device’s longitude), then the POI is in
East, because the longitude increase when going
East; otherwise the POI is in West.

Fig. 2. Representation of directions

The mentioned 360 points and related directions
are illustrated in Figure 2. Using the Azimuth range
for directions, these 360 points are grouped as:

North: Interval is 157.5 – 202.5.
Northeast: Interval is 202.5 247.5.
Northwest: Interval is 112.5- 157.5.
South: Intervals are 337.5 - 360 and 0 - 22.5.
Southeast: Interval is 292.5 337.5.
Southwest: Interval is 22.5 67.5.
East: Interval is 247.5- 292.5.
West: Interval is 67.5 - 112.5.

5. If the POI is in North (Interval 157.5-202.5),

then:
i. The middle point of North is 180

((157.5+202.5)/2). Looking to the North direction, if
the POI is in East (POI’s longitude > device’s
longitude), then the POI is on the right side of the
screen. So, this point should be between 180 and
202.5. Otherwise, if it is in West, it should be
between 157.5 and 180.

ii. 22.5 is divided to the diffLatitude and it is
multiplied with diffLongitude.

iii. If the POI is in East, 180 is added to the result
of ii. Or if the POI is in West, 180 is subtracted from
the result of ii.

6. If the POI is in South (337.5-360 and 22.5-0),
then:

i. The middle point of South is 0 or 360, since it
has two intervals. Looking to the South direction, if
the POI is in East (POI’s longitude > device’s
longitude), then the POI is on the left side of the
screen. So, this point should be between 337.5 and
360. Otherwise, it should be between 22.5 and 0.

ii. 22.5 is divided to the diffLatitude and it is
multiplied with diffLongitude.

iii. If the POI is in East, the result of ii is
subtracted from 360. Or if the POI is in West, the
result of ii is added to 0.

7. If the POI is in East (Interval 247.5-292.5),
then:

i. The middle point of East is 270. Looking to the
East direction, if the POI is in North (POI’s latitude
> device’s latitude), then the POI is on the left side
of the screen. So, this point should be between 247.5
and 270. Otherwise, it should be between 247.5 and
270.

ii. 22.5 is divided to the diffLongitude and it is
multiplied with diffLatitude.

iii. If the POI is in North, the result of ii is
subtracted from 270. Or if the POI is in South, the
result of ii is added to 270.

8. If the POI is in West (Interval 67.5-112.5),
then:

i. The middle point of West is 90. Looking to the
West direction, if the POI is in North (POI’s latitude
> device’s latitude), then the POI is on the right side
of the screen. So, this point should be between 90
and 112.5. Otherwise, it should be between 67.5 and
90.

ii. 22.5 is divided to the diffLongitude and the
result is multiplied with diffLatitude.
iii. If the POI is in North, the result of ii is added to
90. Or if the POI is in South, the result of ii is
subtracted from 90.

4.2 Finding POI’s Cardinal Direction
9. If the diffLatitude is two times bigger than
diffLongitude or vice versa, the POI is assumed to
be in North, West, East or South. Otherwise, it is
assumed to be in Northeast, Northwest, Southeast or
Southwest.

4.3 Placing POI’s Tag on the Screen
After determining the direction of the POI, the
second step involves placing the POI’s tag on the
right point on the mobile device’s screen. Therefore,
the algorithm continues with the remaining steps:

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 273 Volume 1, 2016

10. Screen range is calculated using the mobile
device’s Azimuth value. This value is assumed to be
the middle point of the screen. 22.5 is subtracted
from this value for finding the starting point of the
screen. Then, 22.5 is added to this value for
calculating the endpoint of the screen. Therefore,
the screen has the range of [Azimuth - 22.5 –
Azimuth + 22.5].

11. If the device is pointed to the POI’s direction,
its interval calculated at step 10 is compared to the
point calculated in one of the steps 5, 6, 7, 8 or 9. If
the POI’s point is inside this interval, then it
becomes visible.

4.4 Calculating the Point’s Position on X-Axis
11. Device’s Azimuth value is interpreted as the
middle of the screen (same as the step 10).

12. The Azimuth value of the first point of the
screen is calculated as: device’s calculated Azimuth
value - 22.5, since each interval has 45 points.

13. The value calculated in step 12 is subtracted
from the POI’s point, that is calculated in one of the
steps 5, 6, 7, 8 or 9.

14. The width of the screen is determined using
Android’s getWidth() function. Then, it is divided to
45, which is the screen range. Therefore, the portion
per point is calculated. As the screen is considered
having 45 points, each point should have a range of
this calculated portion.

Portion * 45 = Device’s screen width

15. The value that is calculated on the step 13 is
multiplied with the one that is calculated on step 14.

16. The tag’s size/2 is subtracted from the value
that is calculated at the step 15.

4.5 Calculating the Point’s Position on Y-Axis
The generation of the POI’s position on the Y-axis
is done using the pitch value. The tagging algorithm
continues following the remaining steps:

17. If the device is directed up or down to the
floor, nothing is listed on the screen.

18. If the device is not directed up or down to the
floor, the screen is considered having 90 points from
up to down. The screen's height is divided to 90 and
the value of a portion per point is obtained.

19. The screen's height is divided in 2 for
obtaining the value of the middle point of the
screen.

20. The pitch value is multiplied with the value
calculated on step 18.

21. The value obtained in step 19 is subtracted
from the value calculated in step 20.

22. The half of the size of the tag is subtracted
from the value calculated in step 21.

Finally, at the end of these 22 steps of the
algorithm, the accurate coordinate of the POI’s
location on the screen is determined.

4.6 Handling Intersections on the Screen
In case multiple POIs are placed at the same point of
the screen, they should be repositioned in order to
remove these visual intersections. The related
algorithm to find the POI’s location on X-axis has
the following steps:

1. All the available intervals are collected into
a hash map.

An example:
Let us assume that the device’s Azimuth value is 120
and x value of the POI is 135 and the size of the
POI’s button (sizePOI) is 20. Then:
Step 11: 120 is interpreted as the middle point of the
screen.
Step 12: 120 – 22.5 = 97.5. This is the starting point
that is visible on the screen. 120 + 22.5 = 142.5. This
endpoint is visible on the screen.
Let us calculate the location of the tag of POI: The
POI’s location is assumed to be at 135, which is
calculated in one of the steps 5, 6, 7, 8 or 9.
Step 11: 135 is between 97.5 and 142.5. Therefore, it
is in the range of the screen. Its tag becomes visible.
Step 13: The POI’s point is subtracted from the
starting point of the screen: 135 – 97.5 = 37.5.
Step 14: getWidth() is 480. (480/45 = 10.6)
Step 15: 10.6 * 37.5 = 400.
Step 16: 20/2 = 10. 400 – 10 = 390.
Thus, the POI is determined to be at point 390 on X
axis. (Note that the range of the screen is 0 - 480.)

An example:
It is assumed that we have [XStartInterval and
XEndInterval] and the POI is at xPOI with the size of
sizePOI.
- If (XStartInterval < xPOI) and (xPOI + sizePOI <
XEndInterval), then the new interval becomes:
[XStartInterval – xPOI] – [xPOI + sizePOI –
XendInterval]
- If (XStartInterval > xPOI) and (xPOI + sizePOI >
XStartInterval), then the new interval becomes:
[xPOI + sizePOI] – [XendInterval]
- If (xPOI < XEndInterval) and (xPOI + sizePOI >
XEndInterval), then the new interval becomes:
[xStartInterval - sizePOI]

The similar rules are applied to find the location on
the Y-axis:
4. This interval (calculated on step 1) is removed
from the hash map. New intervals that are calculated
on step 3 are added to the hash map.
5. If the POI’s calculated position is occupied, the
nearest interval is chosen.

Therefore, the POIs that are on the same point can be
tagged on the screen as in Figure 3.

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 274 Volume 1, 2016

2. A suitable interval is determined for the given
POI.

3. After placing a POI, this interval is changed
by omitting this POI’s occupied place. If it is in the
middle of an interval, then two intervals are
obtained.

5 Performance Analysis

5.1 Comparison with Other Similar
Mobile Applications
The chosen applications are the most frequently
used AR applications developed by professional
software companies. The primary aim is to keep up
with their performance level, and then go beyond it.
Several differences and advantages of the
introduced tagging algorithm are as follows:

- GPS Libraries and Modes: None of these
commercial mobile applications mentioned offering
user to choose a library and mode for fetching GPS
information. They are important for energy
consumption.
- Map Support: In general, this kind of AR
applications offer either map support or screen
tagging/placement support, but SARAS has both of
them.
- Sensor Calibration: Sensors can produce faulty
data from time to time, so a calibration feature is
inserted to the application.
- Compass: A compass is available on the main
screen.
- Language Support: None of these applications
offers user the Turkish language selection.

As its source code was open and its features are
similar, the proposed algorithm is compared to the
one in [2]. This application implemented on Pro
Android Augmented Reality [6], that is an AR world
browser showing data from Wikipedia and Twitter.
It has the following similar features:
- It has a live camera preview.
- Twitter posts and topics of Wikipedia that are
located nearby are displayed over this preview.
- A small visible radar allows user to see whether
any other overlays are available outside their field of
view.
- Overlays are moved in and out of the view as the
user moves and rotates.
- The user can set the radius of data collection from
0 m to 100 km.

The algorithm in [2] is implemented in SARAS
and then the performance tests are generated.

5.2 Performance Analysis in terms of
Resource Utilization

First, the energy efficiency of the algorithms are
considered. The results show that the proposed
tagging algorithm spends less energy than the given
algorithm [2]. Table 1 summarizes the test results
with different modes of GPS and different libraries.
Best results are obtained in normal mode with
Google Play Services library for GPS calculation
and using WiFi for Internet connection.

TABLE I: COMPARISON RESULTS IN TERMS OF RESOURCE
UTILIZATION DURING CONSUMPTION OF 20 MINUTES OF

UNINTERRUPTED RUNNING
SARAS Pro Android Augmented Reality [2]
Energy 978 mW 978 mW
Battery %13 %14
LCD(*) 896 J 892 J

CPU 267 J 265 J
(*) This depends on the number of merchant displayed on screen.

The results reveal that the proposed tagging

algorithm in SARAS is more energy efficient than
the given algorithm [2]. It consumes %1 less battery
in 20 minutes. They both consumes similar amount
of CPU power.

5.3 Performance Analysis in terms of
Accuracy
In order to test the consistency and the accuracy of
the algorithm, two test environments for three
modes (when standing still, when walking and when
driving) are used. The maximum distance for the
map and for the distance filter is set to 10 km.

Fig. 4. Map representation of the test environment with 11 POIs

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 275 Volume 1, 2016

Accuracy while standing still
The mobile device was in hand when the tester was
standing still. Figure 4 shows 11 POIs that are
tagged on the screen. They are depicted in East and
Northeast, when the mobile device is thought in the
middle.

As seen in Figure 5, all of the five POIs in East
are placed correctly on the screen; however the
benchmarking algorithm [2] listed all the POIs in
East, even though several of them were in
Northeast.

Fig. 5. Screenshot comparison of two algorithms - East

As a different test, the mobile device is turned
from right (East) to left (Northeast). Using the
proposed algorithm, all of the POIs are tagged on
the screen, because it is like an intersection for all of
them (Figure 6). Moreover, the POIs which are in
East stays in the right side of the screen, while the
POIs which stays in Northeast are placed on the left
side of the screen. The benchmarking algorithm
showed the same tags as in East (Figure 5). It tagged
all of the POIs.

With the intention of testing the intercardinal
direction handling, the mobile device is turned
through Northeast. The resulting screenshots are
given in Figure 7. Using the proposed algorithm, all
the six POIs in Northeast are tagged properly. The
benchmarking algorithm [2] tagged only one of the
POIs which is on Northeast. It missed four others.
Finally, it is concluded that the proposed algorithm
produces more accurate and reliable tags compared
to the benchmarking algorithm.

Accuracy while walking
The same tests are generated for the walking case.
The outputs were reliable and fast. The application
was reacting quickly and the outputs were as same
as the test in standing still.

Accuracy when driving
The POI was the Çırağan Adalet Sarayı in İstanbul.
The output screens of two algorithms are given in
Figure 8 and Figure 9. Comparing these outputs, it
can be concluded that both of these algorithms have
similar outputs. Both of them placed Çırağan Adalet
Sarayı at the correct position.

6 Conclusions
The aim of this research is to develop an algorithm
for tagging POIs on mobile device’s screen. An AR
mobile application (called SARAS) is built. SARAS
is compatible with Android OS. One of the biggest
banks in Turkey (Yapı Kredi Bank-YKB) and
Ministry of Industry and Sciences have supported
this research. The POIs are chosen as the merchants,
offices and the ATMs of the bank. Using this
application, users can find the nearest bank and
ATMs, along with their way towards them. Besides,
bank may use this application as a new channel to
inform their potential users on related campaigns.

Fig. 6. Screenshot comparison of two algorithms – turning from East to

Northeast

Since only the benchmarking algorithm [2] has
an open source algorithm, the performance
comparisons are done using it. Both algorithms
spend almost the same amount of energy. The
biggest source of energy consumption of AR
applications are the GPS and camera usage. LCD
usage depends on the number of POIs that are
displayed on the screen, therefore it can be
concluded that both algorithms spend almost the
same amount. The CPU usage of these two
algorithms are at similar ranges, but the proposed
algorithm consumes less battery.

The proposed algorithm places accurate tags
while standing still and walking. When driving, it

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 276 Volume 1, 2016

places the tags at accurate locations on the screen in
each time, however its response time to position
changes need to be improved.

The most significant contribution of this
algorithm is its simplicity. It is developed for the
countries in North hemisphere, but it is easy to
convert it for the South hemisphere. Going further,
the performance of the algorithm will be improved
to more rapidly react to position changes while
driving.

Fig. 7. Screenshot comparison of two algorithms – Northeast

Acknowledgment
This research has been financially supported by
Galatasaray University Research Fund, with the
project number 15.401.006.

Fig. 8. Screenshot comparison of two algorithms – Driving – 1

Fig. 9. Screenshot comparison of two algorithms –Driving - 2.

References:
[1] R. Calvo-Palomino, “Mobile Augmented

Reality browsers should allow labeling
objects”. Proc. Mobile AR Summit (MWC
2010), 2010.

[2] S. Graça, J. F. Oliveira, and V. Realinho,
“WorldPlus: An Augmented Reality
Application with Georeferenced Content for
Smartphones - the Android Example,” Proc.
20th WSCG International Confrence on
Computer Graphics and Computer Vision,
2012.

[3] R.T. Azuma, “A Survey of Augmented
Reality,” Presence Teleoperators and Virtual
Environments vol. 6 (4), 1997, MIT Press, pp.
355 - 385.

[4] D.W.F. van Krevelen, and R. Poelman, “A
Survey of Augmented Reality Technologies,
Applications and Limitations,” International
Journal of Virtual Reality, vol. 9 (2), 2010,
pp.1

[5] P. Geiger, R. Pryss, M. Schickler, and M.
Reichert, “Engineering an Advanced Location-
Based Augmented Reality Engine for Smart
Mobile Devices,” Technical Report, University
of Ulm, 2013.

[6] Raghav Sood, Pro Android Augmented
Reality, 2012, APress.

Doga Erisik et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 277 Volume 1, 2016

