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Abstract:— This paper presents the theoretical machine of a Quantum Intelligent Agents of Medical Decision.  
Introducing the concept of Intelligent Agents in Quantum Deep Q-Learning involves integrating principles of 
reinforcement learning, quantum computing, and intelligent agent frameworks. The theoretical machine is designed 
to simulate quantum computer and to explore quantum algorithms without the need for physical hardware (quantum 
computer). Our approach does not refer directly to any simulator. Oriented to the Sickle Cell Disease, the approach 
leverages quantum-inspired representations of classical Deep Reinforcement Learning to handle management of 
related medical data for an optimized treatment recommendations. 
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1. Introduction 

Face to medical decision of complex diseases healthcare 
professionals often deal with a variety of uncertain, 
incomplete, and imprecise information derived from patient 
symptoms, medical imaging, laboratory tests, and historical 
data. One approach to manage uncertainty and complexity in 
medical decision, ultimately leading to more accurate and 
reliable diagnostic processes, involves to incorporate 
advanced Artificial Intelligence techniques. Among them, 
there are the Deep Reinforcement Learning (DRL). It enables 
AI systems to learn optimal decision-making strategies by 
interacting with medical data and refining predictions over 
time. 

However, implementing DRL in healthcare comes with 
several challenges such as the data quality and availability [1], 
and the computational complexity [2]. In one hand, the 
healthcare data is often incomplete, noisy, or biased, making 
it difficult for DRL models to learn effectively. In the other 
one, the DRL requires high computational power. 

Nowadays, addressing the limitations of DRL in complex 
medical decisions are tackling through several innovative 
approaches: data augmentation, collaborative data sharing, 
safe exploration techniques, simulated environments, model 
optimization, hybrid models, transfer learning, domain 
adaptation, complex reward functions, multi-objective 
optimization, cloud computing, efficient algorithms, 
hierarchical reinforcement learning, etc. 

Anyways, ideal is to create more efficient and capable 
learning agents that can make faster, more accurate, and 
context-aware medical decisions.  So, standing down on Deep 
Reinforcement Learning, it is possible to integrate the 
principles inspired by Quantum Deep Q-Learning (QDQL) 
which offers the computing advantages of parametric 
quantum circuits (Quantum Neural Networks (QNN)) [3, 4]. 

Parametric quantum circuits, also known as Quantum 
Neural Networks (QNNs), represent a significant intersection 
between quantum computing and machine learning. There are 

parameterized, meaning they can be adjusted (trained) based 
on the data input. Thus, they could potentially learn from 
fewer data points or represent more complex relationships.  

Current devices cannot still reach the high expectations 
that quantum computing promises. However, there exists 
simulators (e.g., Qiskit, PennyLane, or Cirq) to implement 
quantum neural networks (QNNs) or quantum-enhanced 
policies and simulating quantum computing principles [5]. 

This paper presents the theoretical machine of a Quantum 
Intelligent Agents of Medical Decision (QIAMed).  
Introducing the concept of Intelligent Agents in Quantum 
Deep Q-Learning (Q-DQL) involves integrating principles of 
reinforcement learning, quantum computing, and intelligent 
agent frameworks. The theoretical machine is designed to 
simulate quantum computer and to explore quantum 
algorithms without the need for physical hardware (quantum 
computer). Our approach does not refer directly to any 
simulator. 

Oriented to the Sickle Cell Disease (SCD), the approach 
leverages quantum-inspired of classical Deep Reinforcement 
Learning (DRL) to handle management of related medical 
data for an optimized treatment recommendations. 

According to [6], Sickle Cell Disease (SCD) is 
characterized by variable clinical outcomes, with some 
patients suffering life-threatening complications during 
childhood, and others living relatively symptom-free into old 
age. Because of this variability, there is an important potential 
role for precision medicine, in which particular different 
treatments are selected for different groups of patients. 

2. Methods 

The interest in exploring and developing use cases for 
Quantum Deep Q-Learning in the healthcare field to improve 
decision-making processes is not new. So there are several 
studies.  

Niraula [7], develop, in oncology, “a novel quantum deep 
reinforcement learning (qDRL) framework for clinical 
decision support that can estimate an individual patient’s dose 
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response mid-treatment and recommend an optimal dose 
adjustment”. Their model was trained in the IBMQ quantum 
processor. Chow in [8] proposes a review paper that 
“examines the foundational concepts, key applications, and 
challenges of these technologies in healthcare, explores their 
potential synergy in solving clinical problems, and outlines 
future directions for quantum-enhanced ML in medical 
decision-making”. From a general theoretical point of view on 
quantum computing, we mention the tutorial proposed in [9], 
that “introduces the mathematical framework of quantum 
algorithms ranging from basic elements including quantum 
bits and quantum gates to more advanced concepts such as 
variational quantum algorithms and quantum errors.” 

What emerges from all these articles is a set of concepts 
necessary to understand the contribution of quantum 
computing theories to classical computation. 

It therefore follows that our theoretical machine refers to a 
computational or abstract model of a QDQL-based agent 
whose learning process and decision-making are governed by 
theoretical principles of quantum circuits and reinforcement 
logic.  

This approach leverages the strengths of both quantum and 
classical computing, aiming to enhance the efficiency and 
capability of reinforcement learning agents. 

2.1 Intelligent Agent 

Intelligent agent is a computer system or entity that can 
perceive their environment, reason about it, and act upon it to 
achieve specific goals.  

Thus, the mathematical formalization of intelligent agents 
is based on defining their environment, actions, perceptions, 
and goals. This includes theirs strategies, optimizing their 
decision-making processes, and applying learning and 
adaptation algorithms.  

Intelligent agents are often modeled using Markov 
Decision Processes (MDPs), where: 
(S): Set of states. 
(A): Set of actions. 
(T(s, a, s')): Transition probability function, denoting the 
probability of moving to state (s') after taking action (a) in 
state (s). 
(R(s, a)): Reward function. 
(γ): Discount factor (between 0 and 1) that models the 
importance of future rewards.  

2.2 Deep Q-learning 

Deep Q-Learning is an extension of the traditional Q-
learning algorithm that uses deep neural networks to 
approximate the Q-value function.  

Q-learning is a model-free reinforcement learning 
algorithm used to learn the value of an action in a given state.  

It is particularly useful for solving Markov Decision 
Processes (MDPs) where the agent learns to make decisions 
by interacting with its environment. 

Q-learning is guaranteed to converge to the optimal Q-
values, given sufficient exploration of the state-action space 
and appropriate learning parameters. The convergence is 
typically achieved through repeated interaction with the 
environment and updating the Q-values based on the 
observed rewards. 

2.3 Quantum Computing 

1) Qubits 

The basic unit of a quantum circuit is a qubit (quantum 
bit), which can exist in a superposition of states (0, 1, or both), 
represented mathematically as: {|0⟩, |1⟩, |0⟩ and |1⟩}. 

2) Quantum Gates 
Quantum gates operate on qubits and are the building 

blocks of quantum circuits. They manipulate the state of 
qubits through unitary transformations.  

Common quantum gates include: 
- Hadamard Gate (H): Creates superposition. 
- Pauli Gates (X, Y, Z): Perform bit-flip and phase-flip 

operations. 
- CNOT Gate: A two-qubit gate that flips the state of 

a target qubit if the control qubit is in the state |1⟩. 
- Phase Gates: Introduce relative phase shifts between 

states. 
3) Quantum Circuit 
A quantum circuit is a sequence of quantum gates applied 

to a set of qubits. The circuit operates from left to right, with 
the input state on the left and the output state on the right.  

Quantum circuits manipulate qubits through quantum 
gates, which are the quantum analogs of classical logic gates. 

4) Measurement 

At the end of a quantum circuit, qubits are typically 
measured to obtain classical bits. The measurement collapses 
the quantum state into one of the basis states with 
probabilities determined by the state vector. 

2.4 Framework of Quantum Intelligent Agent 

(QIA) 

5) Quantum State Space 
The quantum states or quantum-inspired probabilistic 

representations of an agent can be characterized as a set S={s1, 
s2, …, sj}. At any given instant, the environment env is 
assumed to be in one these states.  

Let S be the set of quantum-inspired states, represented as 
vectors |s⟩ in a Hilbert space ℋ [10, 11], encoding 
superpositions of classical states with amplitudes ci ∈ ℂ, such 
that: 

     |s⟩  = ∑ 𝑐𝑖𝑖 |φ𝑖⟩       (1) 
 
where |φi⟩ are basis vectors of ℋ, ci are complex coefficients 
satisfying ∑ |ci|² = 1 (normalization condition). 

6) Quantum Action Space 

The set of action space A={a1, a2, …, ai} is consists of 
predefined quantum operations, such as applying specific 
quantum gates (e.g., Hadamard, Pauli-X, or controlled 
operations) [12].  

7) Quantum Q-Function Approximation  
Quantum Q-Function Approximation is used to estimate 

the Q-values that guide an agent’s decision-making process. 

In classical reinforcement learning, the Q-function 
represents the expected reward for taking an action in a given 
state.  

Quantum approaches aim to enhance this approximation 
using parameterized quantum circuits (PQCs) [13]. 

Eustache Muteba A., Nikos E. Mastorakis
International Journal of Biology and Biomedicine 

http://www.iaras.org/iaras/journals/ijbb

ISSN: 2367-9085 43 Volume 10, 2025



A parameterized function Q̂: ℋ × A → ℝ, approximates 
the expected cumulative reward of taking action a in quantum 
state |s⟩: 

       Q̂(|s⟩, a; θ) ≈ Q*(|s⟩, a)        (2) 

 where θ ∈ ℝ are learnable parameters. 
8) Policy 
The agent's policy π: ℋ → P(A) maps quantum states to 

probability distributions over actions. This means that given a 
quantum state, the policy determines the likelihood of 
selecting each possible action.  

Typically derived via softmax over Q̂: 
 

 𝜋(𝑎|𝑠) =
𝑒(Q̂(|s⟩,a; θ)/τ)

∑ 𝑒(Q̂(|s⟩,a′; θ)/τ)
𝑎′

     (3) 
where τ > 0 is a parameter controlling exploration. 

9) Temporal Difference (TD) Learning Objective 
The agent updates Q-values using TD learning.  

Minimizing the Bellman error [14, 15] in Quantum Deep Q-
Learning (QDQL) ensures accurate Q-value estimation, 
improving reinforcement learning performance.  

Given a transition (|s⟩, a, r, |s'⟩), minimize the Bellman 
error:  
𝐿(𝜃) = E

|s⟩,a,r,|s′⟩
[𝑟 + 𝛾 max

𝑎′
Q̂(|s′⟩, a′;  θ⁻)  −  Q̂(|s⟩, a;  θ))² ]    (4) 

 
where γ ∈ [0,1] is the discount factor, and θ⁻  are parameters 
of a target network or previous iteration.  

10) Parameter Update 

Update θ by gradient descent: 
       θ ← θ - α ∇_θ L(θ), 
where α > 0 is the learning rate. 

11) Quantum-Inspired State Encoding 

Classical observations are encoded into quantum state 
vectors |s⟩ via feature maps Φ: X → ℋ, enabling 
representation of uncertainty and correlations as quantum 
superpositions. 

12) Measurement and Action Selection 

Action selection corresponds to a quantum measurement 
collapsing |s⟩ to an action outcome with probability π(a|s). 

3. Results 

As mentioned in the introduction, this study aims to create 
a framework for simulating quantum computing principles, 
specifically the application of Deep Reinforcement Learning 
(Q-Learning) by a so-called “Quantum Intelligent Agent” 
system to medical decisions. And so we evoked about 
optimizing the treatment of Sickle Cell Disease.  

3.1 Problem Formulation 

As long as the patient's condition is known to be sickle cell 
disease, medical staff can quickly conduct a clinical 
examination. For most patients, the management of sickle cell 
disease revolves around prevention of complications and 
regular medical monitoring.  

Sickle cell disease manifests itself by various signs and 
each person may experience symptoms differently. Symptoms 
and complications as stated in [16], [17] can be classified in 5 
groups of manifestation of the disease: Sickle cell anemia; 
Vaso-occlusive complications; Frequent episodes of acute 
pain; Significant proteinuria; Low oxygen saturations or 
Hypoxemia.   

Furthermore the different categories of treatment of sikle 
cell diseases are the following: “Medicine to prevent the 
sickling of red blood cells, Medicine to reduce vaso-occlusive 
and pain crises, Medicine to reduce or prevent multiple 
complications, Medicine to treat pain, Medicine to reduce risk 
of infection, Transfusions and Potential genetic therapy 
treatments” [18].  

According to [19], “there are no standard treatments that 
cure sickle cell disease. However, there are treatments that 
help people manage and live with the disease”. 

3.2 Architecture of QIAMed 

The architecture in figure 1 shows a step-by-step modular 
view of QIAMed system. 

 
Fig. 1: Architecture of QIAMed System 

3.3 Implementation of System 

The project's implementation follows essential steps that 
are closely linked to the programming environment namely 
the “Python compiler”. And of course, it is related to the 
proposed approach “Quantum Deep Q-Learning”, which is 
shown in Figure 1. 

1) Datasets for QIAMed  
Main datasets and theirs features for a sickle cell disease 

medical decision are related to symptom, disease and 
treatment. They are structured as arrays.  

symptom = ['anemia', 'painful episodes', 'painful swelling 
of hands and feet', 'frequent infections', 'pain', 'swelling', 
'fever', 'fatigue', 'sickle cell pain crisis', 'acute inflammatory 
arthritis', 'septic arthritis', 'swelling', 'swelling', 'more frequent 
urination', 'shortness of breath', 'vomiting', 'rapid heart rate', 
'coughing', 'wheezing', 'confusion', 'bluish color'] 

disease = ['Sickle cell anemia', 'Vaso-occlusive 
complications', 'Frequent episodes of acute pain', 'Significant 
proteinuria', 'Low oxygen saturations']  

treatment = ['Penicillin V', 'Hydroxyurea', 'Overnight 
oxygen', 'Regular blood transfusions', 'Crizanlizumab', 
'Opioid analgesics', 'L-glutamine', 'Anti-inflammatory drug', 
'Nonsteroidal', 'ACE inhibitors', 'Dietary changes', 
'Angiotensi-converting-enzyme', 'Overnight oxygen'] 

2) Data Processing 
To perform the simulation, remember that we 

programmed it in Python and without using libraries such as: 
PennyLane, TensorFlow Quantum and PyQLearning.  
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DATA STRUCTURE REPRESENTATION: 
Bit representation of state-action is used for efficient 

encoding of states and faster computation.  

The first state-action is composed of 20 symptoms and 5 
disease types under the environment_symptom_disease = [ 
# Sickle cell anemia (class 0) 
([1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 0), 
#Vaso-occlusive complications (class 1) 
([0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0], 1), 
# Frequent episodes of acute pain (class 2) 
([0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0], 2), 
# Significant proteinuria (class 3) 
([0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0], 3), 
# Low oxygen saturations' (class 4) 
([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], 4)].  

Thus for example, the Sickle cell anemia (class 0) is 
represented as ([1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 0). 
Sickle cell anemia is manifested by the following symptoms: 
['anemia', 'painful episodes', 'painful swelling of hands and 
feet', 'frequent infections', …]. The bit 1 corresponds to the 
name of medicine in the list of treatments. 

The second state-action is composed of 5 disease types 
and 13 medicines under the env_disease_treatment = [ 
# Sickle cell anemia 
([1,1,1,1,0,0,0,0,0,0,0,0,0], 0), 
# Vaso-occlusive complications  
([1,0,0,0,1,1,0,0,0,0,0,0,0], 1), 
# Frequent episodes of acute pain 
([1,0,0,0,0,0,1,1,1,0,0,0,0], 2), 
# Significant proteinuria     
([1,0,0,0,0,0,0,0,0,1,1,1,0], 3), 
# Low oxygen saturations 
([1,0,0,0,0,0,0,0,0,0,0,0,1], 4)]. 

INPUT DATA 
The simulation  
test_input1 =  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1], 
test_input2 =  [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 
test_input3 =  [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1]. 

PARAMETERS 
 Parameters play a central role in shaping how the quantum 
agent learns and adapts. The parameters are adjusted during 
training to approximate the optimal Q-function, just like 
weights in a neural network. 

 The simulation works with the following parameters:   

alpha = 0.5   # learning rate 
gamma = 0.95   # discount factor 
epsilon = 0.2 # exploration rate 
episodes = 500 

3.4 Output - Medical Decision 

The printed outputs below show finding symptom lists, 
suggested diagnosis, similarity scores when uncertain and 
selected treatments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

TABLE I.  Q-VALUES IN % FOR EACH STATE-ACTION PAIR 

Input 

value 

Class 1 Class 2 Class 3 Class 4 Class 5 

test_input1 0% 0% 0% 0% 100% 
test_input2 100% 0% 0% 0% 0% 
test_input3 20% 20% 20% 20% 20% 

 

 
Fig. 2: QDQL diagnosis for the 3 inputs 

4. Discussion 

The result shows that the Quantum Deep Q-Learning 
agent has perfectly learned to associate symptom patterns with 
the correct sickle cell disease classes in the small test set, 
achieving 100% accuracy. The classification report confirms 
perfect precision, recall, and F1-score for all disease classes, 
indicating no misclassifications. 

This high performance is expected given the small, well-
defined dataset and the agent's training on the same patterns. 
The model uses softmax probabilities over Q-values to predict 
diseases, and when uncertain, it leverages Jaccard similarity 
to suggest likely diagnoses. Treatment suggestions correspond 
to the learned mappings from diseases to treatments. 

Overall, the result validates that the agent can correctly 
predict disease classes from symptom inputs and suggest 
appropriate treatments, demonstrating the effectiveness of the 
Q-learning approach combined with similarity measures in 
this controlled scenario. 

The contribution of our study lies in the methodology. 
Simulating Quantum Deep Q-Learning (QDQL) without a 
framework is ambitious but possible. 

Input value 1 (Finding symptoms): coughing, wheezing, confusion, 
bluish color 
Suggested diagnosis: Low oxygen saturations 
Selected treatments:  Penicillin V, Overnight oxygen 

 

Input value 2 (Finding symptoms): anemia, painful episodes, painful 
swelling of hands and feet, frequent infections 
Suggested diagnosis: Sickle cell anemia 
Selected treatments:  Penicillin V, Hydroxyurea, Overnight oxygen, 
Regular blood transfusions 

 

Input value 3 (Finding symptoms): coughing, confusion, bluish color 
Suggested diagnosis: Sickle cell anemia, Vaso-occlusive 
complications, Frequent episodes of acute pain, Significant proteinuria 
and Low oxygen saturations 
Similarity 75% (Jaccard coefficient) with: Low oxygen saturations 
Selected treatments:  Penicillin V, Hydroxyurea, Overnight oxygen, 
Regular blood transfusions 
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The approach proposed simulates quantum-inspired 
probabilistic decision-making in a classical Q-learning 
framework, improving diagnosis under uncertainty by 
combining learned Q-values and similarity metrics. 

Tackling Deep Reinforcement Learning (DRL) challenges 
using Quantum Deep Learning (QDL) is an emerging area of 
research that leverages the principles of quantum computation 
to enhance traditional machine learning techniques. 
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