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Abstract: - Abdominal aortic segmentation is a critical procedure for the diagnosis and monitoring of pathologies 
such as aneurysms and strictures. Accurate and efficient imaging of this anatomical region requires the use of 
advanced computational imaging technologies. In this work, we investigate the application of modern machine 
learning (ML) tools for automatic segmentation of the abdominal aorta from computed tomography (CT) data 
without retraining of available ML networks. We compared two ML image segmentation systems against 
annotations performed by skilled personnel. Nvidia's Medical Open Network for Artificial Intelligence (MONAI) 
and TotalSegmentator are two state-of-the-art tools that in recent years have become almost universally prevalent 
in the field of Medical Image Analysis as solutions that combine deep learning algorithms and ML to improve 
accuracy and efficiency in medical image segmentation. We used 19 CT datasets acquired in the framework of 
the SAFE-AORTA action, along with annotations of the lumen and intraluminal thrombus. We used the Dice 
Similarity coefficient (DSC) and the average Hausdorff Distance (HD) to quantitatively assess the performance 
of the two systems in segmenting the aorta region (lumen and intraluminal thrombus). Preliminary results indicate 
minimal differences between the two ML tools and their adaptation to expert segmentation remains within 
acceptable limits (DSC~0.83, HD~3 mm with 95%HD~10 mm). In a next phase, we will explore the possibility 
of improving the models through dataset enrichment and retraining, with the aim of increasing the accuracy of 
abdominal aortic segmentation. 
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1 Introduction 
The abdominal aorta, as the main artery of the 

human body, is involved in a multitude of diseases, 
the most typical being abdominal aortic aneurysm 
(AAA). The AAA is defined as a permanent, 
localized dilatation of the aorta that exceeds more 
than 50% of its normal diameter (usually >3 cm) [1]. 
It is a serious vascular condition that is the 15th 
leading cause of death in the United States and the 
10th leading cause of death in men over 55 years of 
age, with more than 15,000 deaths annually. The 
most serious complication of AAA is rupture, which 

is accompanied by high mortality rates (50-75%) [2] 
and is characterized by the absence of symptoms, 
often described as a ‘silent killer’. 

The main imaging techniques used to capture 
aortic geometry are Computed Tomography (CT) and 
Magnetic Resonance Imaging (MRI) [3]. CT offers 
rapid image acquisition but exposes the patient to 
ionizing radiation and often requires the use of an 
iodinated contrast agent. In contrast, MRI provides 
high-resolution images of both the aorta and its wall, 
does not involve ionizing radiation or iodinated 
contrast agents, and can offer both functional and 
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biomechanical information about the aortic structure. 
However, MRI requires longer acquisition times and 
is not suitable for patients with metal implants.  

Image segmentation is a fundamental pre-
processing step for many computational techniques, 
including artificial intelligence algorithms used in 
automated data analysis. Manual and semi-automatic 
segmentation methods are time-consuming, prone to 
human error, while they are inefficient when 
processing large volumes of data required for training 
automated computational workflows. As previously 
reported in [4], a significant degree of intra-observer 
variability was observed in the maximal infrarenal 
aortic diameter measurement on CT images of 2 mm 
or less. In contrast, a substantially higher 
interobserver variability was documented, reaching 
82%. Automatic segmentation of medical images is a 
critical tool in the modern diagnostic and therapeutic 
process. Early and accurate detection and monitoring 
of AAA requires accurate imaging of the aortic 
morphology, making its segmentation critical for 
medical decision-making [5,6].  

Previous studies have focused on computer-aided 
segmentation of the aorta using conventional image 
processing techniques, such as region-growing based 
models [7] and model-based approaches [8], usually 
combining several image processing steps to achieve 
the final result, which constitutes them susceptible to 
errors. In recent years, machine learning (ML) 
systems - and in particular deep learning (DL) 
techniques - have emerged as highly effective tools 
for segmenting anatomical structures from images 
such as CT scans [9,10]. These models are able to 
identify complex patterns in the data and provide 
reproducible segmentation results with increased 
accuracy. Previous review studies [11,12] have 
examined in detail the state-of-the-art Artificial 
Intelligence (AI) models for aortic diseases [9], 
highlighting their contribution in early diagnosis 
[13], treatment planning [14], and monitoring [15]. 

However, the variety of proposed methodologies 
highlights the need for a systematic benchmarking of 
their performance in terms of accuracy, speed and 
generalizability [16–18]. 

In this work, we investigate the application of 
modern ML tools for automatic segmentation of the 
abdominal aorta from CT data without training of 
existing networks. We compared two pre-trained ML 
image segmentation systems against segmentations 
performed by experts. Nvidia's Medical Open 
Network for Artificial Intelligence (MONAI) and 
TotalSegmentator are two state-of-the-art, freely 
available software, that in recent years have become 
almost universally prevalent in the field of Medical 
Image Analysis as solutions leveraging ML 

techniques to improve accuracy and efficiency in CT 
and MR image segmentation. 

The remainder of this paper is structured as 
follows: Section 2 presents the materials and methods 
used in this study, including the datasets, 
segmentation frameworks and the evaluation metrics 
employed. In Section 3, we report and discuss the 
quantitative results of the segmentation experiments, 
comparing the performance of the two approaches 
and analyzing their clinical relevance. Finally, 
Section 4 summarizes the main conclusions, 
highlights the limitations of our work, and outlines 
potential directions for future research.  
 

 

2 Material and Methods 
2.1 Material 

Anonymized CT imaging data from 19 abdominal 
aortic aneurysm (AAA) cases were provided by the 
Department of Vascular Surgery at the General 
University Hospital “Attikon”, Athens, Greece. The 
collection and secondary use of the data were 
approved by the Ethics Committee of GUH Attikon 
(Approval No. 168/19-02-2025) and by the Research 
Ethics Committee of the University of West Attica, 
Greece: Protocol ID: 17798/11-03-2024. 

Subjects (mean age of 70y, mainly men) were 
scanned following routine protocol for AAA 
management. The mean maximum AAA diameter of 
the subjects was 44 mm. 

The DICOM images collected for this study are 
512 × 512 pixels while the number of slices per 
study varies from 59 to 1226 (average: 560). The 
median slice thickness is 1 mm. 

Annotation was conducted by a team of experts, 
including physicians and medical engineers, using 
the 3D Slicer software [19]. All segmentations were 
subsequently reviewed and finalized by vascular 
surgeons. The segmented region extended along the 
abdominal aorta from the level of the celiac axis until 
the bifurcation of the common iliac arteries. The 
initial parts of the celiac axis, superior mesenteric 
artery, and renal arteries were also included. Separate 
masks were created for the blood lumen, the 
intraluminal thrombus (ILT), and the calcifications. 

We then merged the lumen and ILT labels to a 
single annotation because the evaluated ML systems 
were trained (a priori) to segment the entire aorta. 
This merged annotation served as the gold standard 
for this study and was used to compare the results of 
the automatic ML segmentation methods. Thus, the 
segmentation target is the aorta region (lumen and 
intraluminal thrombus).  
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2.2 TotalSegmentator 
The TotalSegmentator is a DL based tool built on the 
nnU-Net framework [20], optimized for automatic 
multi-organ and pathology segmentation from 3D CT 
images. In the context of AAA detection, it provides 
high-resolution segmentation of the abdominal aorta, 
enabling precise measurement of vessel diameter and 
aneurysmal bulges. The model supports over 100 
anatomical structures and is trained on diverse 
datasets to enhance generalizability. It operates on 
volumetric data and supports both DICOM and NIfTI 
formats. With GPU acceleration, TotalSegmentator 
12 delivers rapid inference times suitable for clinical 
use, making it a powerful asset in early AAA 
identification and risk stratification [21]. We 
employed the TotalSegmentator software to identify 
all available anatomical structures and retained only 
the label corresponding to the aorta.  
 
2.3 MONAI labeler  
The MONAI, powered by NVIDIA, is an open-
source, PyTorch-based framework designed to 
accelerate ML development in healthcare imaging. 
MONAI provides domain-optimized tools for 
training, deploying, and validating DL models across 
various modalities, such as CT, MRI, and ultrasound. 
It supports 3D medical imaging natively and includes 
advanced utilities for data augmentation, pre-

processing, and multi-GPU training. With integration 
into NVIDIA Clara and support for standardized 
medical formats (i.e. DICOM, NIfTI), MONAI 
enables scalable, reproducible research and clinical 
translation [22]. We used the MONAI software to 
segment the aorta and retained the associated ‘aorta’ 
label. 
 
2.4 Evaluation  
We employed two well acceptable and widely used 
metrics in evaluating medical image segmentation 
performance; the Dice-Sørensen coefficient (DSC) 
[23], that quantifies the similarity/overlap between 
two sets 𝑋 and 𝑌, as calculated by (1) and the average 
Hausdorff distance (HD) [24], that considers the 
distance between segmented boundaries, as 
calculated by (2):  

𝐷𝑆𝐶(𝑋, 𝑌) = 2
|𝑋∩𝑌|

|𝑋|+|𝑌|
   (1) 

𝐻𝐷(𝑋, 𝑌) =
1

2
(
1

|𝑋|
∑ min

𝑦∈𝑌
𝑑(𝑥, 𝑦)𝑥∈𝑋 +

1

|𝑌|
∑ min

𝑥∈𝑋
𝑑(𝑥, 𝑦)𝑦∈𝑌 )(2) 

where |𝑋| and |𝑌| are the number of elements in each 
compared set, and 𝑑(𝑥, 𝑦) denotes the distance 
between points 𝑥 and 𝑦. The DSC takes values in the 
range [0, 1], while values over 0.8 are considered 
acceptable. The HD takes values in the interval 
[0, +∞) with values less than 3 mm being considered 
a very good match.  

 
Fig. 1. The flow diagram of the present work 

The DSC is simple to interpret, is automatically 
supported by the ML systems under study, and 
focuses on the internal coincidence of the partitioned 
regions. The HD highlights errors in boundaries that 

may be clinically important, is considered a more 
rigorous metric, useful in cases where precise 
contours matter, and is often used in conjunction with 
Dice for more comprehensive evaluation. 
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Statistical differences were tested based on the 
Wilcoxon signed-rank test, the non-parametric 
alternative of the two sample Student’s t-test.  

Fig. 1 shows the flow diagram of the present 
work. The dataset was distributed in three directions; 
to expert staff/physicians where they manual 
delineated the lumen, to TotalSegmentator and 
MONAI systems.  
 
3 Results and Discussion 
Fig. 2a presents the overlap of the three 
segmentations. The experts’ delineation (the gold 
standard) is in red, and the TotalSegmentator and 
MONAI segmentations are in orange and green 
respectively. Fig. 2a clearly shows under-segmented 
regions in the thrombus area, primarily located 
around the aortic bifurcation along the Z-axis from 
the legs to the head. Physicians tend to delineate the 
aortic bifurcation low and not high, while both ML 
systems ignore the bifurcation (they are not trained to 
do so) and move the entire width of the aorta upward. 
This discrepancy distorts our comparison with the 
region of interest.  

Fig. 3 shows a dual graph of the DSC metric and 
the volume difference for the MONAI system versus 
the expert’s segmentation. As we may observe, the 
substantial discrepancies in DSC are attributable to 
the considerable variations in volume (i.e instances 
of T1-P4, T1-P6, T1-P9, and T2-P15).  

 

a  b  

c  d  

e  

 

Fig. 2. a. Segmented regions of entire aorta 
volume, b-d segmentation of cropped aorta 
volumes, e. Segmented regions of the cropped 
volume (red: the experts’ delineation, orange: and 
green: TotalSegmentator and MONAI ML systems 
respectively) 

 

 
Fig. 3. Dice Coefficient and volume difference for MONAI versus expert segmentation (pre-cropped condition)  
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Table 1. The systems’ performance in terms of Dice-Sørensen coefficient and Hausdorff distance metrics 

 Dice-Sørensen coefficient Hausdorff Distance in mm (95% HD) 

 MONAI TotalSegmentator MONAI TotalSegmentator 

T1-P2 0.83 0.87 2.02 (6.99) 1.71 (6.15) 
T1-P4 0.92 0.92 2.11 (9.96) 2.12 (9.87) 
T1-P5 0.91 0.88 0.89 (3.06) 1.06 (2.64) 
T1-P6 0.69 0.65 14.56 (49.35) 15.64 (53.57) 
T1-P8 0.88 0.89 2.09 (8.96) 1.92 (8.47) 
T1-P9 0.64 0.86 4.55 (13.83) 2.02 (8.99) 

T1-P10 0.87 0.89 2.01 (7.12) 1.82 (6.80) 
T1-P11 0.86 0.83 2.28 (8.40) 2.32 (8.58) 
T1-P12 0.91 0.92 1.64 (5.77) 1.50 (5.20) 
T1-P14 0.85 0.86 2.05 (7.18) 1.81 (6.05) 
T1-P16 0.89 0.92 2.15 (11.10) 1.55 (7.64) 
T1-P18 0.88 0.89 2.19 (7.66) 1.90 (7.27) 
T1-P20 0.85 0.90 2.10 (6.60) 1.55 (6.57) 
T2-P2 0.91 0.89 1.32 (3.61) 1.59 (4.23) 
T2-P3 0.84 0.83 1.79 (4.68) 1.78 (4.68) 
T2-P4 0.74 0.71 3.93 (15.80) 4.46 (16.92) 

T2-P13 0.71 0.71 3.93 (15.80) 3.80 (13.72) 
T2-P15 0.78 0.77 3.56 (13.70) 3.80 (13.72) 
T2-P17 0.90 0.85 2.29 (12.81) 2.92 (14.85) 

Median 0.86 0.87 2.11 (8.4) 1.90 (7.6) 

Range 0.28 0.27 13.67 (46.29) 14.58 (50.93) 

 
For this reason, we cropped the volumes in the 

area around the aneurysm region (see Fig 2b-d). Fig. 
2e presents the segmentations overlap in the cropped 
volume. 

Table 1 presents the systems’ performance in 
terms of DSC and HD metrics for the cropped 
dataset. The median of DSC metric is similar 
between the methods tested; 0.86 (Confidence 
Interval (CI): [0.79, 0.87]) for MONAI and 0.87 (CI: 
[0.80, 0.88]) for TotalSegmentator respectively (𝑝 >
0.05). Consequently, it was determined that the HD 
metric exhibited negligible variation (𝑝 > 0.05) 
between MONAI and TotalSegmentator with median 
values of 2.11 and 1.9 respectively. In relation to the 
T1-P6 case, it was determined that both systems’ 
metrics lay outside the confidence intervals, so it may 
be considered as potential outlier. This is primarily 
attributable to the presence of two distinct thrombi 
along the aorta and the under-segmented aortic arch 
in the gold standard. Moreover, the 95th percentile of 
the HD distance was calculated (see Table 1 in 
parenthesis) as a most robust measure of similarity 
and was found 8.4 for MONAI and 7.6 for 
TotalSegmentator respectively (𝑝 > 0.05).  

We noticed that the pre-trained models we tested 
were not always able to accurately identify the lumen 
and the intraluminal thrombus. This is probably 
because these ML systems have not trained to 
discriminate sub-regions. The above-mentioned 
findings highlight both the potential and limitations 
of current pre-trained ML segmentation systems 
when used without additional training or 
customization for complex vascular structures such 
as the aorta.  

The overall agreement of automated segmentation 
results with clinical expert annotations was moderate 
to high, a finding that highlights the importance of 
domain-specific adaptation and potential fine-tuning. 
The results also reinforce the need for more granular 
training datasets that reflect the variability 
encountered in real-world imaging. 

Although the DSC and HD metrics did not show 
statistically significant differences between the two 
ML systems, the choice of MONAI as a platform for 
future use is based on its ability to adapt and train on 
specialized structures that are absent from general 
pre-trained models, such as intraluminal thrombus 
and calcifications. These structures have direct 
clinical relevance, as their identification and accurate 
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segmentation can influence decisions on the choice 
of invasive treatment, rupture risk assessment, or 
even the design of intimal grafts [25]. To improve 
accuracy our future work will focus on: Transfer 
learning from existing pre-trained networks, with 
further training (fine-tuning) on local data with 
specific annotations for ILT and calcifications [26]. 
The flexibility of MONAI allows the integration of 
the above strategies into a single pipeline, providing 
a tool that can evolve alongside the clinical needs and 
specificities of each institution. 

We continue our research along with the 
employment of MONAI as a more comprehensive 
image processing platform. The initial findings are 
promising in terms of the lumen and intraluminal 
thrombus, yet the method is encountering challenges 
with the calcifications. 
 
 
4 Conclusion  
In the present work two machine learning driven 
methods compared for their ability to segment the 
aortic lumen and possible intraluminal thrombus. 
Both systems are comparable in terms of classical 
metrics and both encountered difficulties in the clot 
area due to incomplete training on the specific labels. 
Although, MONAI system seems more promising for 
the particular task since it provides the possibility of 
training from scratch with new labels (like 
intraluminal thrombus), making refinements in 
network setup and developing robust solutions for 
tasks like abdominal aortic aneurysm detection. 

The future direction of this research will include 
two primary aspects. Firstly, the augmentation of the 
data currently held in the repository will be pursued, 
accounting for the range of aneurysm sizes, presence 
of thrombus/calcification and sex distribution. 
Secondly, a DL network will be trained using these 
expanded data to ascertain whether there is potential 
for enhancement in terms of segmentation. In 
addition to these objectives, the scope of the research 
will be expanded to encompass the automatic 
segmentation of multiple aortic structures, including 
the lumen, calcifications, and intraluminal thrombus. 
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