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Abstract: Qualitative study of information related to myocardial infarction patients is essential to prevent 
sudden cardiac death. Heart failure (HF) is one of the leading causes of mortality and hospitalization 
worldwide. Revolutionizing mortality and readmission prediction in heart failure by overcoming limitations of 
traditional models and using predictive models based on machine intelligence provides crucial information for 
decision making. A data driven approach for addressing the clinical and public health challenges of heart 
failure play an important role in patients following angioplasty. However, precisely predicting outcomes in 
heart failure patients remains difficult. There is a great need to develop and validate data-driven predictive 
models supporting this purpose. Recently, artificial intelligence (AI) methods have been successfully 
implemented in several medical fields. The same applies to the heart failure population. A comparative 
analysis of various predictive algorithms using machine intelligence and expedition through various models 
will give researchers insights into prevalence, hospitalizations, and global impact of predictive modeling for 
enhanced risk stratification and prognosis. 
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1. Introduction  
 

World Health Organization (WHO). 
Cardiovascular diseases (CVDs) remain a critical 
global health concern, responsible for an estimated 
17.9 million deaths annually in 2019, constituting 32% 
of all worldwide fatalities. Among these, heart attacks 
and strokes account for a staggering 85% of CVD-
related deaths. CVDs encompass a wide spectrum of 
conditions affecting the heart and blood vessels, 
including coronary heart disease, cerebrovascular 
disease, rheumatic heart disease, and various related 
ailments. Tragically, more than four out of every five 
CVD-related deaths are attributed to heart attacks, and 
a concerning one-third of these fatalities occur 
prematurely in individuals under the age of 70.The 
foremost drivers of heart disease and stroke are 
unhealthy lifestyle choices, posing the most significant 
behavioral risk factors. These detrimental behaviors 
encompass poor dietary habits, physical inactivity, 
tobacco use, and excessive alcohol consumption. These 
behavioral risk factors can lead to quantifiable health 
issues such as elevated blood pressure, heightened 
blood glucose levels, increased blood lipid 
concentrations, and problems related to overweight and 
obesity. These "intermediate risk factors" are 
measurable in primary healthcare settings and serve as 
indicators of an elevated risk for heart attacks, strokes, 
heart failure, and other associated complications. 
Efforts to reduce the global burden of CVDs must 
focus on addressing these modifiable risk factors 
through education, public health initiatives, and 

individual choices to promote heart-healthy lifestyles 
and ultimately reduce the devastating impact of 
cardiovascular diseases on global mortality. 

 
2. Myocardial Infarction 

 

A heart attack, medically referred to as a myocardial 
infarction (MI), occurs when there is damage to the heart 
muscle due to reduced blood flow. This reduced blood 
flow is often a result of partial or complete blockage 
within the coronary arteries, which supply the heart with 
oxygen and nutrients. When the coronary arteries are 
partially or completely blocked, it can lead to a myocardial 
infarction and potentially trigger other medical conditions, 
such as abnormal heart rhythms known as arrhythmias. 
During an MI, a portion of the heart muscle experiences 
damage, and over time, this damaged tissue is replaced by 
scar tissue. Unfortunately, the presence of scar tissue 
increases the risk of developing cardiac arrhythmias, either 
during the heart attack itself or in the immediate aftermath. 
These arrhythmias can further complicate the recovery and 
long-term health of the individual who has experienced a 
heart attack. Therefore, prompt medical attention and 
appropriate management are crucial to minimize the 
damage caused by a heart attack and reduce the risk of 
associated complications. Implantable Cardioverter 
Defibrillators (ICDs) indeed serve as a significant tool in 
reducing the risk of arrhythmic sudden death, especially in 
individuals at high risk of life-threatening arrhythmias. 
However, it's important to highlight that not all patients 
derive the same level of benefit from these devices, and 
the underutilization of ICDs and cardiac resynchronization 
therapy (CRT) is a persistent issue in many countries.  
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2.1 Coronary Angioplasty 
Coronary angioplasty, also known as percutaneous 

coronary intervention (PCI), is a medical procedure 
used to address blockages in the coronary arteries, 
which supply blood to the heart muscle. This procedure 
is performed to restore blood flow and alleviate 
symptoms associated with coronary artery disease 
(CAD).Coronary angioplasty includes procedures like 
Balloon catheter, Balloon inflation, Stent placement and 
Medication. Angioplasty is highly effective in 
improving blood flow and relieving symptoms 
associated with blocked coronary arteries, such as chest 
pain (angina) and shortness of breath. Additionally, it is 
a critical intervention during a heart attack (myocardial 
infarction) to promptly reopen a closed artery and 
minimize heart muscle damage. This is known as 
primary angioplasty or percutaneous coronary 
intervention for acute myocardial infarction (PCI-
AMI).The underlying condition being treated with 
angioplasty is atherosclerosis, a form of heart disease 
characterized by the accumulation of fatty plaques 
within the coronary arteries. These plaques can reduce 
blood flow and lead to symptoms or, in severe cases, 
heart attacks. Coronary angioplasty has become a 
common and effective procedure for managing 
coronary artery disease and improving the quality of 
life for many patients with heart-related conditions. It is 
often considered alongside other treatment options, 
including lifestyle modifications and medications, as 
part of a comprehensive approach to managing heart 
disease.  

 

 
Fig.1.Artery with plaque 

3. Artificial Intelligence 
 

It's great to hear that artificial intelligence (AI) methods 
are being successfully implemented in various fields, 
including medicine and healthcare [1]–[5]. Machine 
learning techniques have indeed shown promise in a wide 
range of medical applications, and the detection of heart 
failure (HF) and decision making in cardiac 
resynchronization therapy (CRT) are just a couple of 
examples  
[6]–[9].  
Heart Failure Detection: Heart Rate Variability (HRV) is 
a useful feature in diagnosing heart failure. AI models can 
analyze HRV data to detect irregularities that may indicate 
heart problems. These models can be trained on large 
datasets to recognize patterns associated with heart failure, 
allowing for more accurate and early detection. 
Cardiac Resynchronization Therapy (CRT): Machine 
learning can assist in the decision-making process for 
CRT. These systems can analyze patient data, including 
echocardiograms, ECGs, and clinical records, to help 
identify which patients are most likely to benefit from 
CRT. This personalized approach can improve patient 
outcomes and reduce unnecessary procedures.  
Risk Stratification: AI can also be used for risk 
stratification in heart failure patients. It can predict the 
likelihood of hospital readmissions or adverse events, 
allowing healthcare providers to allocate resources more 
efficiently and provide timely interventions.  
Drug Discovery and Treatment Optimization: AI-
driven drug discovery and treatment optimization are 
gaining traction in the field of cardiology. Machine 
learning models can analyze vast datasets to identify 
potential drug candidates and optimize treatment regimens 
for individual patients, taking into account factors like 
genetics, lifestyle, and comorbidities.  
Remote Monitoring: AI can enable remote monitoring of 
heart failure patients. Wearable devices and sensors can 
collect continuous data, which AI algorithms can analyze 
in real-time. This allows for early detection of changes in 
a patient's condition, reducing hospital readmissions and 
improving overall care.  
Medical Imaging: AI is making significant strides in 
medical imaging, including the analysis of cardiac images 
such as echocardiograms and MRIs. AI can assist in the 
interpretation of these images, helping clinicians identify 
structural and functional abnormalities more accurately.  
Data Integration: AI can integrate data from various 
sources, including electronic health records, imaging, and 
genomic data, to provide a holistic view of a patient's 
health. This comprehensive data analysis can aid in 
diagnosis and treatment planning. 
It's important to note that while AI has great potential in 
healthcare, there are also challenges related to data 
privacy, model interpretability, and regulatory 
considerations that need to be addressed. Additionally, 
ongoing research and validation are crucial to ensure the 
reliability and effectiveness of AI-based medical 
applications. 
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4. Machine Learning Algorithms 
 
The use of machine learning (ML) algorithms in medical 
research and practice has indeed shown significant 
promise in capturing complex, nonlinear, and 
unstructured relationships within clinical data [10]. In 
particular, these algorithms have demonstrated 
advantages over traditional linear models, especially in 
the context of predictive modeling for patient outcomes. 
Here are some key points highlighted  
Nonlinear Relationships: ML algorithms excel at 
capturing nonlinear relationships within clinical data. 
This capability is essential when dealing with medical 
datasets that often involve intricate interactions among 
various clinical features and patient characteristics. 
Improved Accuracy: ML-based predictive models are 
known for their ability to provide superior accuracy 
compared to linear models. This enhanced accuracy can 
have a substantial impact on the precision of prognosis 
and treatment recommendations. 
Patient-Centric Approach: ML-based models allow for 
a more individualized, patient-level approach to 
healthcare. By analyzing patient-specific data, these 
models can tailor recommendations and treatment plans 
to better suit the unique needs and characteristics of each 
patient. 
Increasing Adoption: There has been a notable increase 
in the number of studies incorporating AI-based 
predictive models in medicine. This trend reflects the 
growing recognition of the potential benefits of AI and 
ML in improving healthcare outcomes and decision-
making. 
Clinical Practice Integration: The integration of AI-
based predictive models into clinical practice is 
anticipated to rise in the near future. As these models 
continue to demonstrate their effectiveness and 
reliability, healthcare providers are likely to adopt them 
to enhance patient care, treatment planning, and 
prognosis assessment. 
Specific Application to Heart Failure Patients after 

Angioplasty: To screen and analyze predictive models 
based on AI algorithms specifically among patients with 
heart failure after angioplasty. This focused approach can 
provide valuable insights into how AI can be applied to 
improve the management and prognosis of this specific 
patient population. 
It's important to note that while AI-based predictive 
models offer great potential, their successful integration 
into clinical practice also comes with challenges such as 
data quality, interpretability of model predictions, and 
ethical considerations. Therefore, continued research and 
collaboration between clinicians, data scientists, and 
policymakers will be essential to ensure the responsible 
and effective use of AI in healthcare [11]. 
 
 
 
 
 

5. Framework for Comparing Machine 

Learning Algorithms 
 
Comparing machine learning algorithms in heart failure 
management involves evaluating their performance based 
on various metrics and criteria. Here's a general 
framework for comparing these algorithms: 
Accuracy and Predictive Power: Evaluate the accuracy 
of different algorithms in predicting heart failure events, 
patient outcomes, or treatment responses. Consider metrics 
such as sensitivity, specificity, and area under the ROC 
curve (AUC) to assess their predictive power. 
Interpretability: Determine the interpretability of the 
algorithms. Some algorithms, like decision trees or linear 
regression, provide transparent and interpretable models, 
which may be preferred in clinical settings for 
understanding the basis of predictions. 
Data Requirements: Assess the data requirements of 
each algorithm. Some algorithms, such as deep learning 
models, may require large datasets with high-dimensional 
features, while others may perform well with smaller, 
more structured datasets. 
Generalization: Analyze the ability of algorithms to 
generalize to new, unseen data. Over fitting (model fitting 
noise rather than signal) should be minimized, and cross-
validation can help assess generalization performance. 
Computational Efficiency: Consider the computational 
resources required by each algorithm. Some algorithms 
may be computationally expensive and impractical for 
real-time or resource-constrained applications. 
Robustness: Evaluate how well algorithms perform under 
various conditions and when faced with missing data or 
noisy inputs. Robust algorithms are less sensitive to data 
variations. 
Clinical Relevance: Assess the clinical relevance and 
feasibility of the algorithm's predictions. The predictions 
should align with clinical practices and contribute to 
improved patient care. 
Ethical and Fairness Considerations: Examine potential 
biases in algorithm predictions, especially regarding race, 
gender, or socioeconomic factors. Algorithms should be 
evaluated for fairness and equity. 
Integration with Healthcare Systems: Consider the ease 
of integrating the algorithm into existing healthcare 
systems and workflows. Compatibility with electronic 
health records (EHRs) and interoperability are essential. 
Real-world Validation: Validate the algorithm's 
performance in real-world clinical settings. Clinical trials 
or retrospective studies can provide insights into how well 
the algorithm performs in practice. 
Comparison with Baseline Models: Compare the 
machine learning algorithms with baseline models or 
existing clinical guidelines to determine their added value 
in heart failure management. 
Scalability: Assess the scalability of the algorithms, 
especially if they need to process large volumes of data 
from multiple sources. 
Cost-effectiveness: Consider the cost-effectiveness of 
implementing machine learning algorithms in heart failure 
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management. Calculate potential cost savings or benefits 
associated with their use. 
It's important to note that the choice of the most suitable 
machine learning algorithm for heart failure management 
may depend on the specific objectives, available data, 
and clinical context. Therefore, a thorough evaluation 
and validation process is essential to make informed 
decisions about algorithm selection. 

  
6. Comparison of Predictive Value 
The Area under the Curve (AUC) is a widely used metric 
for comparing the predictive performance of models, 
including their comparison to conventional prediction 
scores. The AUC measures the trade-off between 
sensitivity and specificity. Specifically, it quantifies the 
probability that a classifier model will correctly rank a 
randomly selected positive instance higher than a 
randomly selected negative instance. The AUC value 
always falls between 0 and 1.0, where an AUC of 0.5 
implies no better accuracy than chance, and an AUC of 
1.0 signifies perfect accuracy [12]. To interpret AUC 
scores effectively, the following guidelines can be 
applied: 
AUC = 0.5: Indicates no discrimination, essentially 
equivalent to random chance. 
AUC = 0.5–0.7: Suggests poor discrimination, where the 
model's predictive ability is limited and may not be 
reliable. 
AUC = 0.7–0.8: Indicates acceptable discrimination, 
meaning the model demonstrates moderate predictive 
performance. 
AUC = 0.8–0.9: Suggests excellent discrimination, 
where the model exhibits strong predictive accuracy. 
These guidelines can help researchers and practitioners 
assess and compare the discriminative power of different 
models, aiding in the selection and evaluation of the most 
suitable models for a given task. 
 
 

 
Fig.2.Comparison of Predictive Value 

 

7. Methodology 
 

7.1. Xgboost Algorithm 
 

The first study conducted by Luo et al. aimed to create a 
risk stratification tool assessing the all-cause in-hospital 
mortality in intensive care unit (ICU) patients with HF 
[13].The XGBoost algorithm was used to develop the 
machine learning model. The derivation data (5676 
patients) were randomly divided into a training cohort 
(90%), and then the rest of the cohort (10%) was used to 
validate the performance. Finally, 24 features were 
selected as the most important from the predictive model 
as follows: mean anion gap, mean Glasgow Coma Scale, 
urine output, mean blood urea nitrogen (BUN), maximum 
Pappenheimer O2 (pO2), age, mean plasma calcium, 
minimum plasma glucose, mean plasma magnesium, mean 
respiratory rate (RR), mean arterial base excess, mean 
creatinine, body mass index (BMI), mean temperature, 
maximum temperature, maximum platelet, minimum 
prothrombin time (PT), mean systolic blood pressure 
(SBP), mean partial thromboplastic time (PTT), mean 
oxyhaemoglobin saturation (spO2), mean PT, mean 
diastolic blood pressure (DBP) and minimum PTT.  The 
AUC was 0.809. In effect, the current classifier had only a 
slight deterioration in performance in the external cohort. 
Anion gap, blood coagulation status and volume of urine 
output were found to be the three most important 
predictors in this model.  
 

7.2. Boosted Decision Tree Algorithm 
 

The machine learning assessment of risk and early 
mortality in HF (MARKER-HF) risk scale was developed 
based on a cohort of 5822 patients from out- and inpatient 
care. They were identified from medical history by their 
first episode of HF [14].  
The boosted decision tree algorithm was used to build the 
model. During the training process, eight variables were 
identified as the predictor features. The model was 
designed to distinguish patients with high and low risk of 
death. The patients who died before 90 days after the 
index hospitalization were considered the high-risk group, 
and patients with last-known follow-up 800 or more days 
after the index hospitalization were classified as the low-
risk group.  
 

7.3. Deep Neural Network 
 

Kwon et al. described a deep-learning-based artificial 
intelligence algorithm for predicting mortality of patients 
with acute heart failure (DAHF) [15].Study included 2165 
patients. Another study by Kwon et al. aimed to develop a 
machine learning predictive model for mortality among 
heart disease patients based only on the results of 
echocardiography [16]. Only echocardiography features 
were used as predictor variables. In external validation, the 
model achieved AUC = 0.898 for heart diseases and 0.958 
for CAD.  
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7.4. Xgboost Algorithm Using Care Gaps 
 

Jing et al. created a ML model for predicting 1-year all-
cause mortality among HF patients [17]. The data from 
26,971 subjects (with 276,819 clinical episodes) were 
used to train the model, and data from 548 
patients/episodes were used to perform external 
validation. All clinical visits since 6 months before HF 
detection date including outpatient visits, 
hospitalizations, emergency department admissions, 
laboratory tests and cardiac diagnostic measurements 
were identified and grouped into episodes.26 variables 
are used. The model achieved discriminatory power in 
assessing mortality risk with an AUC of 0.77 in cross-
validation and 0.78 in the external validation. This 
showed that the model tended to slightly overestimate the 
risk of mortality. Moreover, the simulation of closing the 
8 care gaps resulted in a 1.7% reduction of mortality. 
 

7.5. Tree-based Pipeline Optimizer 
 

Another study conducted by Chirinos et al. concerns 
associations between plasma biomarkers of patients with 
heart failure with preserved ejection fraction and the 
composite endpoint of all-cause death or heart failure-
related hospital admission [18]. The authors selected 379 
patients from the Treatment of Preserved Cardiac 
Function Heart Failure with an Aldosterone Antagonist 
Trial (TOPCAT) database for creating their predictive 
model, and they validated it externally (156 subjects) 
with the use of data from the Penn Heart Failure Study 
(PHFS). 
 

7.6. Ensemble Machine Learning and 

Natural Language Processing 
 
Mahajan et al. developed two predictive models using 
different ML methods. The first of them combined 
structured and unstructured data, and the second one used 
ensemble ML methods for predicting the risk of 
readmissions for HF. All dependent variables were 
available, and there were up to 5% missing values of 
independent variables; thus, in order to maintain 
consistency, the authors used multiple imputations by 
chained equations resampled over five imputed datasets 
for the missing values assuming missing at random. Both 
models aimed to predict 30-day readmissions, and both 
studies used the same structured data predictors. In the 
first instance, the authors used the parametric statistical 
method and statistical natural language processing (NLP) 
to create three models: one using structured data, one 
using unstructured data and one that combined these two 
approaches [19]. The authors used 10 different base 
learning models and two ensemble schemes to combine 
base learner outputs (Super learner and Subsemble 
scheme). Further, the AUCs for each base learner and 
ensemble schemes were calculated. The best single base 
learner achieved AUC = 0.6993 (Extratrees); for Super 

Learner, it was 0.6987 and for Subsemble, 0.6914. This 
showed that ensemble techniques can ensure performance 
at least as good as the best-performing single-base 
algorithm. 
The protocol of the study conducted by Kakarmath et al. 
presents a promising design for investigations [20]. This 
project aimed to build a ML model predicting 30-day 
readmissions in HF patients. The study concerns all types 
of heart failure: left; systolic, diastolic, combined; acute, 
chronic, acute on chronic and unspecified with the 
expected population of 1228 index admissions. 
 
 

Table.1.Performance metrics for machine learning 
algorithms 

 
 
N
o. 

Author Algorith
m 

AUC 
for 
 ML in 
EV 
 

AUC for 
MAGGI
C in EV 
 

AUC for  
GWTG-
HF 
 in EV 

1. L. Jing et 
al. 

XGBoost 0.78 - - 

2. J. Kwon 
et al. 

Deep 
neural 

0.913 
(HF) 

 

0.806 
 (HF) 

0.783 
(HF) 

3. S. 
Mahajan 

Ensembl
e ML 

0.6987 - - 

4. J. 
Chirinos 

Tree 
based 
pipeline 
optimizer 
platform 

0.717 0.622 - 

 
 
8. Literature Reviews: Studies Related 

to Angioplasty 
 
1.A meta-analysis of randomized trials comparing 
coronary artery bypass graft surgery (CABG) with 
percutaneous transluminal coronary angioplasty (PTCA) 
for the treatment of coronary artery disease, incorporating 
new trials and examining long-term outcomes[21]. 
Previous meta-analyses of trials comparing CABG with 
PTCA have reported short- and intermediate-term 
outcomes, but since then longer term follow-up and newer 
trials have been published. A meta-analysis of 13 
randomized trials on 7,964 patients comparing PTCA with 
CABG. Results showed 1.9% absolute survival advantage 
favoring CABG over PTCA for all trials at five years 
(p 0.02), but no significant advantage at one, three, or 
eight years. In subgroup analysis of multivessel disease, 
CABG provided significant survival advantage at both 
five and eight years. Patients randomized to PTCA had 
more repeat revascularizations at all-time points (risk 
difference [RD] 24% to 38%, p 0.001); with stents, this 
RD was reduced to 15% at one and three years. Stents also 
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resulted in a significant decrease in nonfatal myocardial 
infarction at three years when compared with CABG. For 
diabetic patients, CABG provided a significant survival 
advantage over PTCA at 4 years but not at 6.5 years. The 
results suggest that, when compared with PTCA, CABG 
is associated with lower five-year mortality, less angina, 
and fewer revascularization procedures. For patients with 
multivessel disease, CABG provided a survival 
advantage at five to eight years, and for diabetics, a 
survival advantage at four years. The addition of stents 
reduced the need for repeat revascularization by about 
half. 
 
2. Percutaneous coronary angioplasty compared with 
exercise training in patients with stable coronary artery 
disease: A randomized trial[22]. Regular exercise in 
patients with stable coronary artery disease has been 
shown to improve myocardial perfusion and to retard 
disease progression. A randomized study was conducted 
to compare the effects of exercise training versus 
standard percutaneous coronary intervention (PCI) with 
stenting on clinical symptoms, angina-free exercise 
capacity, myocardial perfusion, cost-effectiveness, and 
frequency of a combined clinical end point (death of 
cardiac cause, stroke, CABG, angioplasty, acute 
myocardial infarction, and worsening angina with 
objective evidence resulting in hospitalization).Compared 
with PCI, a 12-month program of regular physical 
exercise in selected patients with stable coronary artery 
disease resulted in superior event-free survival and 
exercise capacity at lower costs, notably owing to 
reduced re-hospitalizations and repeat revascularizations. 
 
3.Sustained improvement in left ventricular function after 
successful coronary angioplasty suggest that the 
improvement in left ventricular ejection fraction and wall 
motion score, as assessed by radionuclide studies at rest 
and on exercise, was maintained at a mean long term 
follow up period of 15 months[23]. This was true both of 
patients with previous infarction and of those without. In 
patients with infarction resting function was abnormal. 
Long term clinical success at angioplasty was paralleled 
by long term functional improvement in these indices of 
left ventricular function.  
 
4. Time-frequency analysis of heart sounds before and 
after angioplasty[24]. Heart sounds have been recorded 
from patients with coronary artery disease before and 
after angioplasty. Algorithms to decompose the recorded 
signals to beat cycles synchronized with 
electrocardiogram (ECG) and detect the most correlated 
cycles. Time-frequency analysis is carried out on the 
isolated beat cycles, and another algorithm is used to 
detect local maxima in the time-frequency plane. The 
detected maxima are then compared before and after 
angioplasty. The detection show changes in energy 
distributions of heart sounds. 
 
5. The Assessment of Stent Effectiveness Using a 
Wearable Beam forming MEMS Microphone Array 

System [25]. Studies involving turbulent flow have been 
carried out in many parts of the cardiovascular system, and 
it has been widely reported that turbulence related to 
stenosis (narrowing) of arteries creates audible sounds, 
which may be analyzed to yield information about the 
nature and severity of the blockage. Results so far indicate 
that the high frequency content of the sounds generally 
increases with the degree of stenosis. The goal of this 
research is to detect coronary occlusions using a 
noninvasive, passive, quick and inexpensive approach that 
could eventually be implemented as part of the standard 
medical exam. To improve the quality of the heart sound 
recordings associated with coronary occlusions, a novel 
MEMs microphone array platform was designed and used 
to record diastolic heart sounds from patients with 
coronary occlusions undergoing a coronary stent 
placement procedure. Results suggest the presence of 
more high frequency energy above 150Hz and high 
complexity values in diastolic heart sound signals of 
patients with coronary occlusions and significant decrease 
of these values after stent placement. 
 
6. Left ventricular remodeling after primary coronary 
angioplasty: patterns of left ventricular dilation and long-
term prognostic implications suggest LV remodeling after 
successful PTCA occurs despite sustained patency of the 
infarct-related artery and preservation of regional and 
global LV function. LV dilation at 6 months after AMI but 
not the specific pattern of LV dilation is clearly associated 
with worse long-term clinical outcome [26]. 
 
7. Microwaves treat heart disease: Microwave energy 
might be an excellent source of volume heating, a 
mechanism that could soften plaque in the coronary 
arteries and create a biological stent. In vitro and in vivo 
experiments confirmed that microwave energy delivered 
through specially designed catheters was capable of 
producing cardiac lesions. Microwave is a potential 
energy source and that the technology would evolve to be 
of great benefit to patients with cardiac arrhythmia [27]. 
 
9. Discussion 
 
The study revealed a noticeable increase in the number of 
studies incorporating artificial intelligence methods within 
the heart failure population, as depicted in Figure 3. 
Particularly, over the last four years, there has been a 
significant surge in interest in this field. 
Furthermore, our analysis highlighted the generation of 
numerous predictive models, but only a fraction of them 
underwent external testing. External validation involves 
assessing the predictive performance, including 
discrimination and calibration, using an independent 
dataset distinct from the one used for model development 
[28]. This external validation can be conducted across 
various cohorts, encompassing differences in race, 
geographical region, time periods, socio-economic 
contexts, or types of care (outpatient/inpatient) [29]. This 
approach provides an objective evaluation of the model's 
ability to discriminate in diverse settings beyond those of 
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its initial development data, thus gauging its utility in 
real-world applications. Further analysis revealed that 
machine learning predictive models can accurately 
predict different types of outcomes among HF 
populations. This is particularly important when we 
compare the performance of AI-based models with 
conventional statistical predictive models [30]. 
 
 

 
 

Fig.3.Number of Machine Learning predictive models  
 
 

Limitations of Machine Learning Models 
 
Machine learning (ML)-based approaches indeed come 
with their set of limitations. Firstly, there's the challenge 
of over fitting, wherein predictive models become overly 
tuned to the training data, potentially leading to reduced 
discriminatory ability when applied to other populations. 
To mitigate this issue, one effective solution is to 
evaluate the model's performance in an independent 
cohort. External validation can be established as an 
inclusion criterion. 
Secondly, the interpretability or explainability of ML 
models has gained significant importance in the field. 
End users are not only interested in the quality of the 
models but also in understanding how these models 
arrive at their classifications. Some models, such as 
decision trees, are inherently interpretable because their 
decision-making process is transparent. However, others, 
like neural networks, often operate as black-box models, 
making it challenging to decipher their inner workings. 
To address this interpretability challenge and provide 
insights into a particular model's decision-making 
process, several approaches have been proposed. These 
approaches aim to make the decision process of complex 
models more transparent and understandable to users, 
clinicians, or stakeholders involved in decision-making 
processes. 
 

10. Conclusion 
 
The implementation of artificial intelligence methods in 
heart failure management is still in its infancy. There is a 
compelling need to assess and validate novel predictive 
algorithms, train models across diverse patient 
populations, and explore the combination of various types 
of predictor variables. Our study has demonstrated that 
artificial intelligence techniques hold significant potential 
in revolutionizing heart failure management. Data-driven 
predictive models have shown promise in effectively 
handling the vast and complex datasets commonly 
encountered in medical contexts. Machine learning 
techniques, in particular, offer the capability to not only 
process large volumes of medical data but also provide 
opportunities for personalized, patient-level management. 
This has the potential to lead to a reduction in adverse 
outcomes within the heart failure patient population. 
As the field of artificial intelligence in healthcare 
continues to evolve, it holds the promise of transforming 
how we diagnose, treat, and manage heart failure and 
other complex medical conditions, ultimately improving 
patient outcomes and quality of care. 
 
References 

 
[1] Asyali H., “Discrimination power of long-term heart 

rate variability measures.” In Proceedings of the 25th 
Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (IEEE 
Cat No03CH37439), Cancun, Mexico, Volume 1, pp. 
200–203, 17–21 September 2003. 

[2] MelilloP.,FuscoR.,SansoneM.,BracaleM.,PecchiaL., 
“Discrimination power of long-term heart rate 
variability measures for chronic heart failure 
detection”. Med. Biol. Eng. Comput., 49, 67–74, 
2011.  

[3] Liu G., Wang L., Wang Q., Zhou G., WangY., Jiang 
Q.,” A new approach to detect congestive heart failure 
using short-term heart rate variability measures”. 
PLoS ONE, 9, e93399. 2014. 

[4] Chen W., Liu G., Su S., Jiang Q., Nguyen H. “A CHF 
detection method based on deep learning with RR 
intervals”. In Proceedings of the 2017 39th Annual 
International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), Jeju, 
Korea,11–15, pp. 3369–3372, July 2017. 

[5] Chen W., Zheng L., Li K., Wang Q., Liu G., Jiang Q. 
“A Novel and Effective Method for Congestive Heart 
Failure Detection and Quantification Using Dynamic 
Heart Rate Variability Measurement”. PLoS ONE, 11, 
e0165304,2016.  

[6] Cikes M., Sanchez-Martinez S., Claggett B., 
Duchateau N., Piella G., Butakoff C., Pouleur A.C., 
Knappe D., Biering-SørensenT., Kutyifa V. et al. 
“Machine learning-based phenogrouping in heart 
failure to identify responders to cardiac 
resynchronization therapy”. Eur. J. Heart Fail., 21, 
74–85,2019. 

Sudha, Irfan Ahmed
International Journal of Biology and Biomedicine 

http://www.iaras.org/iaras/journals/ijbb

ISSN: 2367-9085 22 Volume 9, 2024



[7] Feeny A.K., Rickard J., Patel D., Toro S., Trulock 
K.M., Park C.J., LaBarbera M.A., Varma N., 
Niebauer M.J., Sinha S.et al. “Machine Learning 
Prediction of Response to Cardiac 
Resynchronization Therapy”. Circ. Arrhythmia 
Electrophysiol.,12, e007316, 2019. 

[8] Schmitz B., De Maria R., Gatsios D., 
Chrysanthakopoulou T., Landolina M., Gasparini 
M., Campolo J., Parolini M., Sanzo A., Galimberti P. 
et al. “Identification of genetic markers for treatment 
success in heart failure patients: Insight from cardiac 
resynchronization therapy”. Circ. Cardiovasc. Genet. 
7, 760–770, 2014. 

[9] Peressutti D., Sinclair M., Bai W., Jackson T., 
Ruijsink J., Nordsletten D., Asner L., Ha 
djicharalambous M., Rinaldi, C.A.,Rueckert D., et 
al. “A framework for combining a motion atlas with 
non-motion information to learn clinically useful 
biomarkers:Application to cardiac resynchronisation 
therapy response prediction”. Med. Image Anal., 35, 
669–684, 2017.  

[10] Mortazavi B.J., Downing N.S., Bucholz E.M., 
Dharmarajan K., Manhapra A., Li S.-X., Negahban 
S.N., Krumholz “H.M.Analysis of Machine Learning 
Techniques for Heart Failure Readmissions”. Circ. 
Cardiovasc. Qual. Outcomes, 9, 629–640, 2016. 

[11] Luo W., Phung Q.-D., Tran T., Gupta S., Rana S., 
Karmakar C., Shilton A., Yearwood J.L., Dimitrova 
N., Ho T.B., et al.”Guidelines for Developing and 
Reporting Machine Learning Predictive Models in 
Biomedical Research: A Multidisciplinary View”. J. 
Med Internet Res., 18, e323,2016.  

[12] Fawcett T. “An introduction to ROC analysis. 
Pattern Recognit”. Lett., 27, 861–874, 2006.  

[13] Luo C., Zhu Y., Zhu Z., Li R., Chen G., Wang Z. “A 
machine learning-based risk stratification tool for in-
hospital mortality of intensive care unit patients with 
heart failure”. J. Transl. Med., 20, 1–9, 2022.  

[14] Adler E.D., Voors A.A., Klein L., Macheret F., 
Braun O.O., Urey M.A., Zhu W., Sama I., Tadel M., 
Campagnari C., et “al.Improving risk prediction in 
heart failure using machine learning”. Eur. J. Heart 
Fail., 22, 139–147, 2019.  

[15] Kwon J.-M., Kim K.-H., Jeon K.-H., Lee S.E., Lee 
H.-Y., Cho H.-J., Choi J.O., Jeon E.-S., Kim M.-S., 
Kim J.-J. et al. “Artificial intelligence algorithm for 
predicting mortality of patients with acute heart 
failure”. PLoS ONE, 14, e0219302. 2019. 

[16] Kwon J.M., Kim K.H., Jeon K.H., Park J. “Deep 
learning for predicting in-hospital mortality among 
heart disease patients based on echocardiography”. 
Echocardiography, 36, 213–218, 2019.  

[17] Jing L., Cerna A.E.U., Good C.W., Sauers N.M., 
Schneider G., Hartzel D.N., Leader J.B., Kirchner 
H.L., Hu Y., Riviello D.M., et al.”A Machine 
Learning Approach to Management of Heart Failure 
Populations”. JACC Heart Fail., 8, 578–587, 2020.  

[18] Chirinos J.A., Orlenko A., Zhao L., Basso M.D., 
Cvijic M.E., Li Z.; SpiresT.E., Yarde M., Wang Z., 
Seiffert D.A., et al. “MultiplePlasma Biomarkers for 

Risk Stratification in Patients With Heart Failure and 
Preserved Ejection Fraction.” J. Am. Coll. Cardiol., 
75, 1281–1295, 2020.  

[19] Mahajan, S.M.; Ghani, R.”Combining structured and 
unstructured data for predicting risk of readmission 
for heart failure patients”.Stud. Health Technol. 
Inform., 264, 238–242, 2019. 

[20] Kakarmath S., Golas S., Felsted J., Kvedar J., 
Jethwani K., Agboola S. “Validating a Machine 
Learning Algorithm to Predict 30-Day Re-Admissions 
in Patients With Heart Failure: Protocol for a 
Prospective Cohort Study”. JMIR Res. Protoc., 7, 
e176, 2018. 

[21] Stuart N Hoffman 1, John A TenBrook, Michael P 
Wolf, Stephen G Pauker, Deeb N Salem, John B 
WongJ Am Coll Cardiol .41(8):1293-304, 2003 Apr 
16. 

[22] Rainer Hambrecht 1, Claudia Walther, Sven Möbius-
Winkler, Stephan Gielen, Axel Linke, Katrin Conradi, 
Sandra Erbs, Regine Kluge, Kai Kendziorra, Osama 
Sabri, Peter Sick, Gerhard Schuler  ,109(11):1371-8, 
2004 Mar 23. 

[23] R A Perry 1, A Singh, A Seth, E J Flint, A Hunt, R G 
Murray, M F ShiuBr Heart J.63(5):277-80, 1990 May. 

[24] A. BouzerdoumJ. Mazumdar; L.J. Mahar “Time-
frequency analysis of heart sounds before and after 
angioplasty” M.A. Tinati; Proceedings of 13th 
International Conference on Digital Signal 
Processing. 

[25] PDF Metin Akay; Andrei Dragomir; Yasemin M. 
Akay; Feihua Chen; Allison Post; Hani Jneid; David 
Paniagua; Ali Denktas; Biykem Bozkurt “The 
Assessment of Stent Effectiveness Using a Wearable 
Beam forming MEMS Microphone Array 
System”IEEE Journal of Translational Engineering in 
Health and Medicine ( Volume: 4) 

[26] Leonardo Bolognese 1, Aleksandar N Neskovic, 
Guido Parodi, Giampaolo Cerisano, Piergiovanni 
Buonamici, Giovanni M Santoro, David 
Antoniucci,106(18):2351-7, 2002 Oct 29.  

[27] Arye Rosen,Arnold J Greenpson,Paul 
Walinsky”.Microwaves treat heart diseases”.IEEE 
Microwave magazine,February 2007. 

[28] Royston P., Altman, D.G. “External validation of a 
Cox prognostic model: Principles and methods”. 
BMC Med. Res. Methodol.,13, 33, 2013.  

[29] Siontis G.C.M., Tzoulaki I. Castaldi, P.J., Ioannidis, 
J.P.A. “External validation of new risk prediction 
models is infrequent and reveals worse prognostic 
discrimination”. J. Clin. Epidemiol., 68, 25–34, 2015.  

[30] Bazoukis, G. Stavrakis, S. Zhou, J. Bollepalli, S.C. 
Tse, G. Zhang, Q.Singh, J.P. Armoundas, A.”A. 
Machine learning versus conventional clinical 
methods in guiding management of heart failure 
patients—A systematic review”. Heart Fail. Rev, 
26,23–34, 2020.  

 
 

 
 

Sudha, Irfan Ahmed
International Journal of Biology and Biomedicine 

http://www.iaras.org/iaras/journals/ijbb

ISSN: 2367-9085 23 Volume 9, 2024




