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Abstract: - In this work, we consider a nonlinear epidemic model with temporary immunity and a saturated incidence 

rate. N (t) at time t, this population is divide into eight sub-classes, with N(t) = S(t) + I(t) +I1(t)+I2(t)+O(t)+A(t)+ Q1(t)+ 

Q2(t). S(t), I(t), I1(t), I2(t), O(t), A(t), Q1(t) and Q2(t), denote the sizes of the population susceptible to disease, infectious 

members, HIV infected members that do not know they are infected, HIV members that know they are infected, members 

suffering from other opportunistic infections, AIDS members, and quarantine members. With the possibility of infection 

through temporary immunity, respectively. The stability of a disease-free status equilibrium and the existence of endemic 

equilibrium determined by the ratio called the basic reproductive number.  

The model has been studied the permanence of the epidemic and Stochastic stability of the free disease equilibrium under 

certain conditions. 

Key Words: - Basic reproduction number, endemic equilibrium, epidemic model stability, stochastic stability, saturated 

incidence. 

 

1 Introduction 

This paper considers the following nonlinear epidemic 

model with temporary immunity: 
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Consider a population of size N (t) at time t, this 

population is divide into for eight sub-classes, with  

N(t) = S(t) + I(t) +I1(t)+I2(t)+O(t)+A(t)+ Q1(t)+ Q2(t),  

S(t), I(t), I1(t), I2(t), O(t), A(t), Q1(t) and Q2(t), denote the 

sizes of the population susceptible to disease, infectious 

members, HIV infected members that do not know they 

are infected, HIV members that know they are infected, 

members suffering from other opportunistic infections, 

AIDS members, and quarantine members. 

With the possibility of infection through temporary 

immunity, respectively. 

The positive constants μ, μ0, μ1, μ2, μ3, μ4, μ5 and μ6 

represent the death rates of susceptible, infectious, HIV 

infected members that do not know they are infected, 

HIV members that know they are infects, members 

suffering from other opportunistic infections, AIDS, and 

quarantine members. 

Biologically, it is natural to assume that: 

μ ≤ min {μ0, μ1, μ2, μ3, μ4, μ5, μ6}. 

The positive constant d is natural mortality rate. 

The positive constant β is the average numbers of 

contacts infective for S and I. The positive constant α1, α2 , 

are the average numbers of contacts. The positive 

constant   represent the incidence rate of the population.  

The positive constants γ1, γ2, are the numbers of transfer 

or conversion of infected those who know and do not 

know who are HIV-positive become AIDS patients. 

The constant is the parameter of emigration,  

is the parameter of the immigration. , the 

parameter of unaware infective to become 

aware infective by screening. 

1 2 3, , , the numbers of transfer to conversion of I, I2, A 

to Q1. The positive constants the numbers of transfer or 

conversion of infected to members suffering from other 

opportunistic infections.  

The term , the numbers of transfer to conversion of, O 

to Q2.  

The term b1 indicate that an individual has quarantined in 

a pool recovery before becoming infected and the term 
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6-µ
2 2e Q (t )b  indicate that an individual has 

quarantined in a pool recovery before becoming 

susceptible, where τ is the length of immunity period,  

The formulation of the incidence rate  

1 2

S(t)I(t)

1+a (t) a (t)S I
, with a1 and a2 are the constants 

parameters. 

The initial condition of (1) given as: 
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 Let C denote the Banach space C ([-τ, 0], ℝ8) of 

continuous functions mapping the interval [-τ, 0] into ℝ8. 

With a biological meaning, we further assume that: 

( ) (0) 0i i  , for i = 1, 2, 3, 4, 5, 6, 7, 8. 

The region  
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Is positively invariant. 

 Hence, system (1), can be rewritten as 
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2 Equilibrium points 

We calculate the points of equilibrium in the 

absence and presence of infection. 
 

In the absence of infection, the system (3) has a 

disease-free equilibrium E0: 

0 1 2 1 2E = , , , , , , , =( ,0,0,0,0,0,0,0) .
T

TS I I I O AQ Q
d

(4) 

Define the quarantine reproduction number as 

0
0 1

R
c d a

                     (5) 

In the presence of infection, substituting in the 

system, Ω also contains a unique positive, endemic 

equilibrium  
* * * * * * * * *
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Theorem 1 

The disease-free equilibrium E₀ of the system 

(3) is locally asymptotically stable if R₀<1. 

Theorem 2 

If R₀>1, the system (3) has a unique, non-

trivial equilibrium *E which is locally 

asymptotically stable. 

3. Permanence of the epidemic  
Theorem 3 

Let 
1 2 1 2, , , , , , ,S I I I O AQ Q be the solution of system (3). 

If there exists a sequence (tn) such that  
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It follows that  
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4 Stochastic stability of the free 

disease equilibrium 
We limit ourselves here to perturbing only 

the contact rate so we replace  by + a b(t), 

where b(t) is white noise (Brownian  motion). 

The system (3) transformed to the following Itô 

stochastic differential equations: 
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Theorem 4: 

If R₀<1, I(t),Q1(t) and Q2(t) are exponentially 

almost surely stable. 
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Let w such that  
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We suppose that  
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With integration, we obtain  
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almost surely. 

The following form from Doob’s martingale 

inequality combined with Itô isometry see [18,].  
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t
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5 Conclusion 

This paper addresses the equilibrium and stability of 

the epidemic model with temporary immunity and 

saturated incidence rate. Both trivial and endemic 

equilibrium are founds. The disease-free equilibrium 

E₀ is globally asymptotically stable if R₀<1, and the 

system has a unique non-trivial equilibrium 
*E which is globally asymptotically stable if R₀>1. 

We study Permanence of the epidemic and 

stochastic stability under some conditions. 
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