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Abstract: Athletes and Physiotherapists may need electromyostimulation to reinforce muscle or to treat deficient
muscles in order to speed up their recovery. Generally, the electromyostimulator does not take into account the
physiological parameters necessary to adapt automatically the stimulation parameters of the system in order to
reach a desired force value. To remedy at this problem and to optimize the rehabilitation sessions, we investigate
the feasibility of controlling the muscular force by using an experimentally-based model.
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1 Introduction

Electromyostimulation is a process which arouses a
lot of interest. As a consequence, this technique is
often used for reinforcement and for reconditioning.
Electromyostimulation (EMS) is carried out by plac-
ing electrodes on the area to be stimulated and electri-
cal pulses are sent into the muscle to create involun-
tary contractions. The effects of these stimulations on
the generated force are difficult to model. The model-
ing should be realized by mathematical models which
take into account the physiological parameters, vary-
ing according to the subject state but also from one
person to another, which renders the modeling diffi-
cult as explained in [1].

The model used in [2, 3] is obtained from exper-
imental data and therefore satisfies specification re-
quirements. Furthermore, it is based on a specific pro-
tocol which proves its reliability to solve the modeling
problem of the relationship between force and stimu-
lation accurately. Thus, this model could be used to
maximize the force, which could be realized for in-
stance by the prediction of the necessary number of
muscular contractions. The predicted contraction fre-
quency could also be used to analyze the correlation
between the physiological aspects and the mathemat-
ical model [4]. The relationship between the force
and the stimulation frequency can also be estimated
on the same model, showing a correlation between
the stimulation frequency and the effects on the force
[5,6]. This model was tested in the case of children
with cerebral paralysis (CP) in order to predict the
obtained force level [7]. In this study, we based our

work on the model proposed in [2, 3], where the con-
trol variable acts on the impulse amplitude while the
frequency is fixed. Section 2 details the equations of
the model. Then in section 3, the nonlinear control
strategy is proposed. In section 4, simulation results
are presented, leading to quantify the control method
efficiency. Finally, section 5 is devoted to the conclu-
sion.

2 Model
The model used is defined by a set of differential equa-
tions, as follows:

dCn
dt

=
1

τc

n∑
i=1

Rie
−(t−ti)
τc − Cn

τc
, (1)

dF

dt
= A

Cn
Km + Cn

− F

τ1 + τ2(
Cn

Km+Cn
)
, (2)

with
Ri = 1 + (R0 − 1)e−(

ti−ti−1
τc

). (3)

Equation (1) represents the Cn derivative depend-
ing on Cn the normalized amount of C2+

a − troponin
complex obtained at each stimulation, the time con-
stant τc and the sum of successive pulses that are gath-
ered in the term:

n∑
i=1

Rie
−(t−ti)
τc , (4)

where ti is the time of ith pulse and Ri the mathe-
matical term defining the magnitude of enhancement
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Figure 1: Evolution of the force value of control for
Fref= 100, 200 and 400 N with dt= 10 ms.

in Cn from the next stimuli. Ri is initialized at R0.
The stimulation generates a muscular force F accord-
ing to (2). The parameters A (the scaling factor of the
force and the muscle shortening velocity), R0 and τ1
(a force time constant) are for this model at their rest-
ing values: A= 5.1 N/ms, R0=2 and τ1= 43.8 ms and
the parameters τ2= 124.4 ms,Km= 0.3 and τc= 20 ms,
as defined in [2] with τ2 the second force time constant
and Km the sensitivity of a strong bound crossbridges
to Cn.

3 Control Method
The control method presented in this section is a non-
linear control applied to the force model. The variable
u represents the control acting on the variation of im-
pulse amplitudes. These amplitudes are found in the
sum of exponential functions between two successive
stimulations dti = ti+1− ti. The control is defined by
the expression:

u =
1

τc

n∑
i=1

αiRie
−(t−ti)
τc , (5)

so that (1) is modified as:

dCn
dt

= u− Cn
τc
. (6)

Equation (5) includes a new parameter αi which is de-
termined by the control u. Therefore, controlling the
force corresponds to finding αi values. The control
method is based on the prediction of the amplitude
of the next pulse with dti constant. In the first part,
we consider the case of a continuous control, named
uNL(t) then we deduct from it the discrete control
u(t), leading to determine αi.
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Figure 2: Evolution of the obtained impulse amplitude
of control of the force for Fref= 100, 200 and 400 N
with dt= 10 ms.

In a general way, a nonlinear affine system func-
tion of uNL(t) is described by the system (7), that is:

ẋ(t) = f(x(t)) + g(x(t))uNL(t), (7)

and
y(t) = h(x(t)). (8)

According to the force model, one can write:

x(t) =

[
Cn(t)
F (t)

]
=

[
x1(t)
x2(t)

]
, (9)

y(t) = x2(t), (10)

where f and g represent vector fields:

f =


−x1
τc

Ax1
x1 +Km

− x2
τ1 + τ2

x1
x1+Km

 =

[
f1
f2

]
, (11)

gT =
[
1 0
]T
. (12)

Equation (10) expresses the fact that only the
force F (t) is measured. Let us assume that the system
is controllable, so that a control by output feedback
would be possible. To perform this, we compute the
first derivative of y(t). From (7) and (8), it comes:

ẏ(t) = Lfh(x) + Lgh(x)uNL(t), (13)

where
Lfh(x) =

∂h

∂x
f, (14)

Lgh(x) =
∂h

∂x
g. (15)

It leads to:

Lfh(x) = [0 1]f = f2, (16)

Aurore Maillard et al.
International Journal of Biology and Biomedicine 

http://www.iaras.org/iaras/journals/ijbb

ISSN: 2367-9085 79 Volume 1, 2016



0 2 4 6 8 10
0

400
600

1 000
F

or
ce

 (
N

)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

200

400

Time (s)

F
or

ce
 (

N
)

Fref= 600

Fref= 800

Figure 3: Representation of the generated forces for
the control of the force for Fref= 600 and 800 N with
dt= 10 ms.
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Figure 4: Evolution of the obtained impulse amplitude
for the control of the force for Fref= 600 and 800 N
with dt= 10 ms.

Lgh(x) = [0 1]g = 0. (17)

As Lgh(x) is null, we compute the second derivative
of y(t). From (13), one can write:

ÿ(t) = L2
fh(x) + LgLfh(x(t))uNL(t), (18)

where

L2
fh(x) = Lf (Lfh(x)) =

∂Lfh(x)

∂x(t)
f, (19)

and

LgLfh(x) =
∂Lfh(x)

∂x(t)
g = [

∂Lfh(x)

∂x1

∂Lfh(x)

∂x2
]g.

(20)
So,

LgLfh(x) =
AKm

(Km + x1)2
+

x2Kmτ2
(τ1(Km + x1) + τ2x1)2

.

(21)

From (21), one can verify that LgLfh(x) is 6= 0.
Therefore, the nonlinear control uNL(t) is defined
such as:

uNL(t) =
−L2

fh(x) + v(t)

LgLfh(x)
, (22)

where ÿ(t) has to be equal to v(t), which is defined to
stabilize the system to yref (t), the target force. Let us
assume that:

v(t) = ÿref−C1(ẏ(t)−ẏref (t))−C0(y(t)−yref (t)),
(23)

where C1 and C0 are constant parameters to be calcu-
lated in order to ensure stability system. Then,

ÿ(t) = ÿref (t)−C1(ẏ(t)−ẏref (t))−C0(y(t)−yref (t)),
(24)

giving:

ÿ − ÿref + C1(ẏ − ẏref ) + C0(y(t)− yref (t)) = 0.
(25)

Let us now define the error e(t) between the force y(t)
and the target force yref (t), that is :

e(t) = y(t)− yref (t). (26)

Equation (25) becomes:

ë(t) + C1ė(t) + C0e(t) = 0, (27)

which corresponds to:

s2E(s) + C1sE(s) + C0E(s) = 0, (28)

where E(s) is the Laplace transformation of e(t) ans
s the Laplace variable. e(t) tends to zero if s2+C1s+
C0 = 0 is stable. The unknown parameters C0 and C1

are then chosen such that the roots of (28) have neg-
ative real parts (stable eigenvalues). A set of test has
been performed using different couples (C1,C0) in or-
der to choose acceptable tendency (overshoot, conver-
gence speed) of the force evolution. For all the follow-
ing, we used (C1, C0)=(−0.006,0.05). The nonlinear
control (uNL(t = ndt)) being computed, it is used to
compute the impulse amplitude to be applied at t (the
real control u is a sum of successive impulses):

u =
1

τc

n∑
i=1

αiRie
−(t−ti)
τc . (29)

To do that, we suppose that uNL(t) is constant during
the interval [t, t + dt[ and chosen to be equal to the
mean value of u(t) during the above interval. The ef-
fect of a control u will be approximately the same as
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Figure 5: Different limits of impulse amplitudes for a
Fref of 800 N (dt= 10 ms).

uNL(t) which leads F to Fref ,

uNL(t) =
1

H + 1

H∑
k=0

u(t+
k

H
dt)

=
1

H + 1

H∑
k=0

1

τc

n∑
i=1

Riαie

−(t+ k
H dt− ti)
τc ,

(30)
where H is the number of simulation values of u dur-
ing [t, t+dt[ equal to a choosen value fixed to 10 with
the integration step ∆T = dt

H+1 . Therefore:

uNL(t) =
1

H + 1
[
H∑
k=0

1

τc
[
n−1∑
i=1

Riαie
−(t+ k

H
dt−ti)

τc +

Rnαne
−(t+ k

H
dt−tn)

τc ]], (31)

αi (i = 1, ..., n− 1) being the previous pulses ampli-
tudes, which were computed using the previous stim-
ulation steps. At time t = ndt, only the value of αn is
unknown. From (31), it comes:

αn =

(H + 1)uNL(t)−
H∑
k=0

1
τc

[
n−1∑
i=1

Riαie
−(t+ k

H
dt−ti)

τc ]

Rn
τc

H∑
k=0

e

−(t+ k
H dt− tn)

τc

.

(32)
Until this step, α is considered as a free parameter.

However, it is obvious that the muscle will not be
stimulated by whatever amplitude. In our case, we
suppose that αi can range between 0 and 2, which
corresponds to 2 times the stimulation constraint im-
posed in [2] (the pulse amplitude is still in an accept-
able range).

4 Simulations Results
Differential equations of the force model (1) to (3) are
solved by numerical methods. The control method is
applied on the force model for the force references
Fref= 100, 200, 400, 600 and 800 N with stimulation
times dt= 10, 20, 40, 60, 80, 100 ms.

In the Figures 1 and 3, the generated force for
Fref=100, 200, 400, 600 and 800 N is represented
with the corresponding computed α (Figures 2 and 4)
(case of unconstrained α). The developed force stay-
ing constant at its final value during the simulation,
we represent just the obtained force for a 1 s and 10
s duration. Contrary to the cases of small reference
values (100, 200 and 400 N) where the impulse am-
plitude is at most equal to 0.2 (Figure 2), the α values
for Fref= 600 and 800 N reach very high values (Fig-
ure 4). As discussed above, the applied pulse to the
muscle must have a reasonable amplitude. The effects
of this constraint is showed in Figure 5 where α is
limited to 0.5, 1 and 2 for Fref= 800 N. It can be ob-
served that α’s limit influences the final value of F . In
fact, the smaller α is, the farther the final value of F
is from Fref .

In Figure 6, we treat the effect of dt (dt varies for
10, 20, 40, 60, 80 and 100 ms) on the final value of
the force for Fref= 100, 200, 400, 600 and 800 N. It is
clear that the difference between F and Fref increases
with dt.

To get closer to experimental results, a white
noise of 5% seems adequate to mimic realistic con-
ditions, that’s why a 5% noise is added to the force
measurements in all the control simulations. On the
Figure 7, the obtained force is presented. At high ref-
erence force, the noise is not negligible and we must
take into account the disturbance on the force and on
the stimulation. With a low reference force, the devel-
oped force is not disturbed by noise.

5 Conclusion
In this work, we applied a control method to control
the force value of a muscle during a stimulation ses-
sion. The computed control method acts on the elec-
trical impulse amplitude during an EMS. The simu-
lation results showed a good efficiency of this con-
trol by maintaining the force at the reference force.
Stimulation time and impulse amplitude effects were
also explored for different cases of reference forces.
A small stimulation time with a constrained impulse
amplitude seems to be the best strategy to compute an
efficient control. In a next study, it would be inter-
esting to include muscular fatigue effects in order to
check if this control could be still efficient then to test
experimentally.
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Figure 6: Application of the nonlinear control for the
reference forces Fref= 100, 200, 400, 600 and 800 N,
the obtained forces for dt= 10, 20, 40, 60, 80, 100 ms.
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Figure 7: Application of the white noise of 5% for the
Fref= 100, 200, 400, 600 and 800 N and dt= 10, 20,
40, 60, 80, 100 ms.
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