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Abstract: The Internet of Things (IoT) has revolutionized various applications including agriculture, but it still
faces challenges in data collection and understanding. This paper proposes a real-time framework with three ad-
ditional semantic layers to help IoT devices and sensors comprehend data meaning and source. The framework
consists of six layers: perception, semantic annotation, interoperability, transportation, semantic reasoning, and
application, suitable for dynamic environments. Sensors collect data in the form of voltage, which is then pro-
cessed by microprocessors or microcontrollers in the semantic annotation and preprocessing layer. Metadata is
added to the raw data, including the purpose, ID number, and application. Two semantic algorithms are proposed
in the semantic interoperability and ontologies layer: the interoperability semantic algorithm for standardizing file
types and the synonym identification algorithm for identifying synonyms. In the transportation layer, raw data and
metadata are sent to other IoT devices or cloud computing platforms using techniques like WiFi, Zigbee networks,
Bluetooth, and mobile communication networks. A semantic reasoning layer is proposed to infer new knowledge
from the existing data, using fuzzy logic, Dempster-Shafer theory, and Bayesian networks. A Graphical User Inter-
face (GUI) is proposed in the application layer to help users communicate with and monitor IoT sensors, devices,
and new knowledge inferred. This framework provides a robust solution for managing IoT data, ensuring seman-
tic completeness, and enabling real-time knowledge inference. The integration of uncertainty reasoning methods
and semantic interoperability techniques makes this framework a valuable tool for advancing IoT applications in
general and in agriculture in particular.
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1 Introduction
The Internet of Things (IoT) is an innovative technol-
ogy significantly changing how we interact with the
physical world. It’s no longer just about linking our
phones and laptops to the internet; it’s about creating
a network of interconnected gadgets that can gather,
distribute, and analyze data, resulting in a smarter,
more automated society. Its fundamental goal is to
enhance convenience and efficiency breakthrough that
provides efficient use in Information and Communica-
tion Technologies (ICT) [1].

Smart agriculture is one of the domains that ben-
efit from IoT [16]. IoT devices can help farmers opti-
mize their resources, improve crop yields, and reduce
waste through precision farming techniques [2].

Despite the efficiency of IoT devices, they unfor-
tunately lack the ability to understand the meaning of
the data collected by their sensors. Therefore, it is im-
portant to integrate IoT with semantic web techniques.
The Semantic Web community is important for ensur-
ing data interoperability and integrating findings. Se-
mantic analytics is a new endeavor that uses Linked

Open Data reasoning to extract meaningful informa-
tion from IoT data. It aims to create new knowledge
through interoperable data interpretation [3].

While massive amounts of data hold the key to
uncovering hidden patterns (through data mining) that
can improve our lives, building truly intelligent ma-
chines that can perceive the world requires integrat-
ing data from all our interconnected devices using ex-
isting technology [4]. To address this challenge, the
World Wide Web Consortium (W3C) established a
dedicated group (Web of Things Community Group)
that developed the oneM2M standards. These stan-
dards aim to create a common language for devices to
share data seamlessly, leveraging familiar web tech-
nologies like RESTful, HTTP, and RDF, ultimately
paving the way for integrating IoT data into AI for
a future filled with intelligent machines [5]. Seman-
tic analytics integrates several technologies and ana-
lytic tools, including logic-based reasoning, machine
learning, and Linked Open Data, to transform data
into actionable information. It blends semantic web
technologies with reasoning methodologies [6].
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As the number of IoT devices increases every
year, each device collects vast amounts of data ev-
ery minute, making it critical to understand this data
beyond static methods [7]. Cisco reports that 4.8
zettabytes of data are transferred annually without any
information about the data’s description [8]. McK-
insey’s research highlights that the productivity and
performance of IoT systems can be increased by 30%
by integrating semantic methods into IoT systems [9].
Therefore, it is important to integrate IoT with seman-
tic web techniques.

The objective of this paper is to propose a new
framework that adds semantic techniques to IoT plat-
forms in general and in agriculture as a case study.
This framework aims to identify the source of the data,
the location of the sensor that sent the data, understand
the meaning of each word, and suggest synonyms to
explain its meaning. This framework also provides
information and meaning for each piece of data col-
lected by the sensors.

The rest of the paper is organized as follows: In
Section 2, a background on IoT and its application in
agriculture are presented, and the different types of se-
mantic methods that can be added to the IoT environ-
ment are discussed. In Section 3, some recent works
are introduced. The proposed framework is presented
and discussed in Section 4. Section 5 provides a case
study in applying the framework in agriculture. Fi-
nally, in Section 6, the conclusion of this paper is pre-
sented with some directions for future research.

2 Background
IoT is considered the third wave of internet technol-
ogy [10]. The first wave involved connecting two
computers together, and the second wave was the
World Wide Web (WWW) . IoT is a technology that
enables any object to transmit and receive data over
the internet [11]. Nowadays, IoT devices can trans-
mit and receive data to and from other IoT devices or
upload and download it to cloud computing [12]. To
enable IoT devices to interact with their environment
independently, they consist of three main components:
sensors, actuators, and a brain device [13].

A sensor is a device that can retrieve and record
environmental measurements such as temperature, hu-
midity, and distance. Actuators enable the IoT device
to perform specific tasks in the environment, such as
using a motor to open or close a door. The brain
device, which can be a microcontroller like the Ar-
duino Uno or a microprocessor like the Raspberry Pi,
takes the environmental measurements from the sen-
sors, processes them into meaningful data, and then
sends the necessary actions to the actuators to perform

specific tasks. As a result, IoT devices can send and
receive data over the internet without human interven-
tion [14].

2.1 IoT application in Agriculture
Regarding agriculture, the integration of the Internet
of Things (IoT) into agriculture has revolutionized
farming practices by providing real-time data and in-
sights that empower farmers to make informed deci-
sions [15]. One of the key advancements is the ability
to monitor crucial environmental parameters such as
temperature, humidity, and soil moisture levels [16].
By using a network of IoT sensors deployed through-
out their fields, farmers can continuously collect and
analyze this data, allowing them to understand the
specific conditions affecting their crops at any given
moment [17].

IoT technology allows farmers to optimize their
operations by monitoring soil moisture levels, deter-
mining irrigation timing, and analyzing temperature
and humidity data [18]. This helps conserve water
and promotes healthier plant growth. IoT technology
can also predict weather patterns, adjusting farming
practices accordingly [19]. It can recommend effec-
tive irrigation methods based on soil type and crop
requirements, enhancing crop yields while minimiz-
ing waste [20]. IoT solutions also facilitate better
pest and disease management by integrating environ-
mental data with pest life cycles, reducing reliance on
chemical pesticides and promoting sustainable farm-
ing practices [21].

2.2 Semantic IoT
Implementing a complete IoT system must consist of
three components: things-oriented, internet-oriented,
and semantic-oriented. The things-oriented compo-
nent is related to sensors and how they collect data
from the environment. The internet-oriented compo-
nent relates to how these sensors communicate over
the internet and share data. Sensors share data without
understanding its meaning, so the semantic-oriented
component focuses on how these sensors understand
the data and provide synonyms for any concept with-
out human intervention in any application that IoT in-
troduces. To enable IoT systems to understand the
meaning and synonyms of the concepts in the shared
data, the IoT field must be combined with knowledge
engineering and machine learning [22].

According to Shewale’s report, there are 17.08
billion IoT devices in use worldwide, and it is pre-
dicted that by the end of 2030, there will be 29.42 bil-
lion IoT devices around the world [23]. These devices
lack many semantic services such as interoperability,
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automatic data reception and transmission, synonym
identification for concepts, and intelligent communi-
cation. These services help IoT users easily discover,
understand, store, and track IoT data. To add these
services to IoT devices, new concepts such as seman-
tic interoperability, ontologies, linked open data, se-
mantic reasoning and annotation must be developed
and designed for IoT systems. When semantic tech-
niques are implemented in IoT devices, the IoT sys-
tem is called the Internet of Everything (IoE), and the
semantic techniques are referred to as the Semantic
Web of Things [24, 22].

2.2.1 Semantic interoperability
Interoperability in IoT systems means the ability to
exchange data between two computers or devices. IoT
devices often lack understanding of data representa-
tion, as they primarily understand XML, JSON, and
CSV formats, while other types are considered incom-
patible. They also struggle with understanding the
meaning of the data and the methods of data transfer
between devices. Semantic techniques can be added
to interoperability to enable devices or computers not
only to exchange data but also to understand the im-
portance and meaning of the data being transferred.
This approach standardizes the way of transferring
data, allowing devices to send, receive, and compre-
hend data in any format and representation. Semantic
interoperability also provides common and accepted
vocabularies to share the meaning of the data be-
tween devices, including techniques that understand
synonyms of words [25].

2.2.2 Ontologies
Ontologies refer to the ability to describe knowledge
using concepts or classes for each word and the re-
lationships between them. Because of the dynamic
environment of IoT, the term ontology is used to rep-
resent and share knowledge among different applica-
tions. The use of ontologies in the IoT field aims to
describe knowledge that comes from sensors as a set
of concepts or classes, defining the properties of each
class and finding the relationships between classes.
To achieve this, the Resource Description Framework
(RDF) is used to describe ontologies using directed
graph techniques [26].

2.2.3 Linked open data
The Semantic Web is an advanced version of the
World Wide Web (WWW) that aims to provide
human- and machine-readable content across the in-
ternet. This helps both machines and individuals ac-
cess any data on the internet by building a framework

that allows data to be reused among applications. The
concept of the Semantic Web originated from linked
data, which aims to create links connecting data across
the internet. These links are human- and machine-
readable, meaning they contain necessary informa-
tion. Uniform Resource Identifiers (URIs) are used
as identifiers to provide information about the content
of any website. Linked open data follows the same
concept as linked data but focuses on providing infor-
mation about links that include free data [27].

2.2.4 Semantic reasoning
Semantic reasoning is a type of reasoning applied
in knowledge-based systems to infer new knowl-
edge from existing knowledge. The simplest form
of semantic reasoning uses IF-THEN rules, such as
SPARQL Inferencing Notation and Semantic Web
Rule Language. In the IoT environment, the IF-THEN
rule alone is not sufficient to understand and infer new
knowledge from existing data because IoT systems
collect data from many sensors distributed across var-
ious areas. Therefore, IoT requires distributed reason-
ing, which aims to gather information from multiple
sensors, store it on a server, and then apply IF-THEN
rules or other semantic reasoning techniques to infer
new knowledge. Distributed reasoning enhances the
efficiency of IoT systems by minimizing latency in
data collection and processing, thereby improving the
system’s ability to infer new knowledge quickly and
accurately [28].

2.2.5 Semantic annotation
Semantic annotations involve adding metadata to IoT
devices by providing descriptions for each device,
sensor, and any related phenomena. These annota-
tions help in identifying each sensor in the IoT envi-
ronment, distinguishing them, and identifying the data
sources. Semantic annotations facilitate easier inter-
operability between devices and sensors. In IoT, se-
mantic annotations can appear as mapped representa-
tions of sensor locations along with information about
each sensor and device. D2RQ and R2RML are lan-
guages that can be used to create these maps of sensor
information [29].

3 Related Work
One of the most significant limitations of IoT devices
is their inability to understand the data collected by
sensors. As a result, many recent works focus on the
importance of adding semantics to IoT devices.

Palo [30] highlights the importance of IoT and
the services it introduces. He also explains how data
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can be transmitted and shared between devices with-
out understanding its meaning or importance. To ad-
dress this, he introduces methods for enabling IoT de-
vices to understand the data they transmit. The au-
thor focuses on semantic interoperability, showcas-
ing the advantages and disadvantages of applying se-
mantic interoperability in IoT systems. He also dis-
cusses how to secure IoT devices after implementing
semantic techniques. Ganzha et al. [31] explains how
ontologies and semantic data processing might im-
prove interoperability in the IoT world. Pliatsios et
al. [32] provide a literature review on how semantic
techniques can be applied to achieve semantic inter-
operability in smart cities, an application of IoT. They
address the challenges of applying semantic interop-
erability techniques in green and sustainable smart
cities. Additionally, they discuss recent works that
demonstrate how various semantic techniques, such as
linked open data, automatic reasoning, and knowledge
graphs, can be applied in smart cities to help sensors
and IoT devices understand the data they share.

Nagasundaram et al. [33] described a fog-based
conceptual paradigm to enable dynamic semantic in-
teroperability in IoT. The model includes a single-tier
fog layer, which provides the necessary computing
power to accomplish this aim. They offer a complete
literature analysis on semantic interoperability, focus-
ing on latency, bandwidth, overall cost, and energy
use. Many recent works suggest new architectures and
frameworks to add semantic techniques to the stan-
dard IoT layers. For example, Yao et al. [34] pro-
posed a brief framework of semantic processing for
interoperability in the Industrial Internet of Things,
featuring task orientation and collaborative process-
ing. They achieve a more efficient way of processing
and exchanging information than conventional meth-
ods, which is critical for handling the demands of fu-
ture interconnected industrial networks.

Mondragón et al. [35] proposed a federated fog
computing relies heavily on semantic interoperability
to enable smooth integration and interaction across di-
verse IoT devices and fog nodes. Mante [36] pro-
posed a new IoT architecture that incorporates seman-
tic techniques to enable devices and sensors to under-
stand the data they share. This architecture can be
applied in smart cities and consists of four layers. The
first layer focuses on monitoring and collecting data
from the system using the oneM2M concept. The sec-
ond layer suggests storing and sending data between
devices and sensors using interoperability techniques.
In the third layer, Mante proposes monitoring the en-
ergy and electricity required for vehicle charging. The
fourth layer uses open API and IUDX standard data
schema to exchange data between systems. Finally,
the authors recommend using semantic techniques to

add meaning and descriptions to the data collected by
the sensors.

Souza et al. [37] proposed a method relies heav-
ily on semantic technologies like ontologies, the Re-
source Description Framework (RDF), and reasoning
procedures to provide a common understanding of
data and promote data exchange, discovery, and in-
tegration across domains. Interestingly, the interoper-
ability solutions mentioned above, either do not use
semantic methods at all, or use them rather sparingly.
Ontologies are used in architectures at the IoT stack’s
lowest level. Herzog and Buchmann’s [38] A3ME
middleware represents devices in heterogeneous sen-
sor/actuator networks as agents. The A3ME architec-
ture allows for device detection, semantic description
sharing, and basic interactions across devices. Kiljan-
der et al. [39] propose an interoperability architec-
ture at the sensor/perception layer. Edgar et al. [40]
proposed a comparative analysis of computational re-
sources in real-time IoT applications based on seman-
tic interoperability. They discuss challenges in attain-
ing semantic interoperability across cloud, fog, and
federated-fog computing systems.

To increase the efficiency of semantic IoT tech-
niques, many recent works use machine learning algo-
rithms to add semantics to IoT devices. For example.
Rahman et al. [41] used machine learning techniques
to develop and design a semantic method for IoT sys-
tems. This semantic method can be used in IoT en-
vironments with dynamic behavior. To add semantics
to IoT systems, the authors rely on ontology method-
ology techniques. Their method can be applied in
various IoT applications such as smart cities, smart
homes, and healthcare systems. The authors con-
ducted experiments that showed their system outper-
formed other existing ontology techniques, achieving
accuracy 17% higher than existing technology. The
experimental results also demonstrated that their sys-
tem decreased response time to queries by 35% com-
pared to existing ontology systems.

Di Martino and Esposito [42] proposed a proto-
type tool to add semantic interoperability in the IoT
environment. This tool, called REST API, relies on
semantic graph techniques to integrate semantics into
IoT. It involves analyzing data and then providing a
semantic explanation of this data. The tool operates
through three main steps to provide the meaning of the
data: critical analysis, manual annotation, and produc-
tion phase. In the analysis phase, the authors used au-
tomatic and manual tools to analyze the data collected
by sensors. Each word is categorized, and the relation-
ship between words is identified using manual annota-
tion tools in the annotation phase. Finally, the mean-
ing of the data is provided in the production phase.
The authors also highlight the importance of adding
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semantics to the IoT environment and discuss differ-
ent semantic methodologies that can be integrated into
IoT systems.

Lynda et al. [43] proposed a machine learning
system aimed at identifying the meaning of data col-
lected by IoT systems and determining whether this
data is related to agriculture. The system operates
through three main steps: perception, semantics, and
classification. In the perception phase, many sensors
collect various data. This data is then analyzed to un-
derstand its meaning using ontology methods. Ma-
chine learning classifiers such as support vector ma-
chines, k-nearest neighbors, decision trees, and naive
Bayes are then used to classify whether the data is re-
lated to agriculture or not. The experimental results
show that the support vector machine outperformed
other classifiers, achieving 99% accuracy.

Guleria and Sood [44] discuss the different
methodologies that can add meaning to the data col-
lected by IoT sensors. They also highlight the role of
the semantic web in adding meaning to data on the
web and show that the IoT framework has three layers
to incorporate semantic interoperability into IoT ap-
plications. The authors also proposed a new machine
learning-based text analytics model that can be used in
healthcare systems to perform semantic classification
of medical data.

While several prior works have proposed
semantic-aware IoT architectures or employed on-
tologies and reasoning to improve interoperability
(e.g., [36], Souza et al. [37], Rahman et al.[41]),
the proposed framework differs in three concrete
ways that together create a distinct, real-time solution
for smart agriculture. First, rather than treating
semantics as an orthogonal add-on, the framework
embeds three dedicated semantic layers (semantic
annotation, semantic interoperability & ontologies,
and semantic reasoning) into a single operational
pipeline designed for low-latency environments; this
vertical integration ensures that annotation, mapping
and inference operate as coordinated, streaming steps
rather than isolated batch tasks. Second, our semantic
annotation is intentionally non-ML and deterministic:
it performs format-agnostic, rule-based enrichment at
line-rate so devices and gateways with limited com-
pute can immediately produce semantically tagged
streams without the training/maintenance overhead of
ML models. Third, the interoperability and synonym-
identification algorithms introduced for Layer 3 are
lightweight, uncertainty-aware, and format-agnostic
— they explicitly reconcile heterogeneous payloads
(JSON, CSV, telemetry frames, simple CSV/TSV,
etc.) on the fly and propagate confidence scores
into the reasoning layer to support uncertainty-based
decisions. In contrast, the cited architectures either

Figure 1: Proposed IoT framework

focus on ontology design and offline reasoning, rely
heavily on ML-based semantic extraction, or assume
homogeneous message formats; they therefore can-
not guarantee the same combination of real-time
throughput, minimal device-side requirements, and
uncertainty-aware inference that our design targets.
Taken together, these design choices enable practical
deployment across constrained agricultural devices
and gateways while preserving semantic fidelity for
higher-level analytics and control.

4 Methodology

In this paper, a new IoT framework is proposed to add
semantic representation to the data collected through
sensors. This framework can be applied to any IoT
application. It can easily be used in dynamic envi-
ronments as it employs real-time techniques to add
semantics to the IoT-collected data. The proposed
framework is shown in Figure 1. It illustrates that the
framework comprises six layers: perception, semantic
annotation and preprocessing, semantic interoperabil-
ity and ontologies, transportation, semantic reasoning,
and application. To enable IoT sensors and devices to
understand the data they share, three layers—semantic
annotation, semantic interoperability and ontologies,
and semantic reasoning—are added in the proposed
framework to incorporate the three types of semantics
in the IoT.
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4.1 Perception layer

The perception layer contains IoT sensors and is re-
sponsible for collecting environmental data. It in-
cludes hundreds of sensors such as temperature, hu-
midity, ultrasonic, and heartbeat sensors. There are
two types of sensors: passive and active, which col-
lect data from the environment. Passive sensors do
not emit any rays into the environment; they collect
data by detecting signals emitted from objects in the
environment, such as thermostats and LM35 sensors.
Active sensors, on the other hand, emit signals into
the environment, and these signals are reflected back
to the sensor with the measured data. For example,
an ultrasonic sensor emits a signal at a specific speed,
and when this signal returns to the sensor, it can eas-
ily compute the distance between objects. Both types
of sensors collect data in the form of electrical signals
(voltage), which is not readable by humans. So, this
layer called physical layer. The main challenges of
this layer are how to secure the sensors and the data
they collect. There are many types of attacks that this
layer faces, such as:

• Eavesdropping: In this type of attack, the at-
tackers create a private network with the sensors,
making it easy to steal the data that the sensors
collect.

• Node Capture: The attackers gain full access
and control of key elements in the network of the
sensors, such as gateways. They can then easily
obtain the data sent or received over the network
from the memory.

• Fake Node: In this type of attack, the attack-
ers create a new node in the wireless sensor net-
work that can communicate with other devices
and sensors to send and receive data from them,
and then steal it.

• Timing Attack: In this kind of attack, the hack-
ers search for weak devices in the wireless sen-
sor network with low computing capability. They
identify vulnerable points to attack and steal in-
formation from these devices. The attackers
measure the time it will take to attack these de-
vices.

To address these challenges, it is crucial to imple-
ment robust security measures in the perception layer,
such as encryption, authentication, and intrusion de-
tection systems, to protect the integrity and confiden-
tiality of the data collected by IoT sensors. These
measures help ensure that the data remains secure and
that unauthorized access is prevented, thereby main-
taining the overall reliability and trustworthiness of
the IoT system.

4.2 semantic annotation and preprocessing
layer

After the sensors collect data, they send it to the se-
mantic annotation and preprocessing layer. Sensors
measure and collect data in the form of voltage, so
in the preprocessing layer, the data is converted into
meaningful information. A microcontroller like the
Arduino Uno or a microprocessor like the Raspberry
Pi can be used to preprocess the voltage data into
meaningful data. These devices can also be used to
perform a new real-time semantic annotation tech-
nique. This layer aims to help the IoT system identify
the source of the data and the application for which
these sensors collected the data. It also aims to pro-
vide a descriptive explanation for the data collected
by these sensors. To perform semantic annotation in
this layer, we suggest a new real-time technique that
assists sensors in adding metadata after they collect
the data. This metadata includes the sensor ID and
a full description of the data collected by the sensor.
Each sensor is assumed to automatically embed this
metadata into the data before sending it to the micro-
controller device. Additionally, GPS is suggested for
identifying the location of each sensor and including
this information in the collected data.

Figure 2 shows the steps that we propose to add
real-time annotation semantic techniques without the
need for machine learning and artificial intelligence
techniques, which can consume time. The real-time
semantic technique consists of two main steps: sensor
data and metadata. In the sensor data step, the sensor
sends the raw data it collected to the microprocessor
or microcontroller. The microprocessor or microcon-
troller then identifies the sensor using an ID that con-
sists of three main components. The first component
is the job that this sensor performs. The second part
contains the ID of this sensor. The third part indicates
the application that this sensor serves. For example, if
a sensor ID is TEMP102SC, this means that the sensor
measures the temperature of the environment, has ID
102, and serves the smart city application. Addition-
ally, in this step, the location of the sensor is estimated
using the Global Positioning System (GPS). The final
step in the sensor data step is converting the actual
data collected from the environment into a human-
readable form. In the metadata step, a descriptive ex-
planation of the data measured by the sensor is added.
Thus, the raw data collected by the sensor, along with
the metadata (ID, location of the sensor, and descrip-
tion of the data), are combined to form new data that
includes both the data and its explanation.
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Figure 2: Semantic annotation steps

4.3 Semantic interoperability and ontologies
layer

The data from the semantic annotation and prepro-
cessing layer provides a full understanding of the data
collected by sensors, but it lacks a standardized for-
mat. Additionally, this data may contain synonymous
words that are unfamiliar to many people. Therefore,
semantic interoperability techniques are incorporated
into this layer to allow devices to share collected data
in any format and using any protocols for transporta-
tion. To achieve this, a new real-time semantic in-
teroperability technique is proposed to enable IoT de-
vices to share data without a specific format and to
suggest synonyms for words that may be difficult for
some people to understand. So, in this layer, two main
algorithms are proposed: the semantic interoperabil-
ity algorithm and the synonymous identification algo-
rithm. These algorithms help IoT devices share data
without a specific format and facilitate understanding
of unfamiliar words by finding synonyms. The seman-
tic interoperability algorithm addresses the problem
of IoT devices requiring specific data formats such as
XML, JSON, and CSV. The flowchart for the seman-
tic interoperability algorithm is shown in Figure 3. It
illustrates that a shared ontology is used to help any
IoT device transform any data format to another for-
mat. It also shows that the device sending the data
must first transform the data format to an intermedi-
ate format that any IoT device can accept by mapping
each word in the original file to the intermediate for-
mat. The sending device must validate the data to en-
sure it is transformed without errors. If the sending
device maps the data without errors, it sends the data
to the receiving device, which uses the shared ontol-
ogy to transform the intermediate data format to its
specific desired format. If the sending device discov-
ers an error during validation, it records the error and
stops transmitting the data.

A synonymous identification algorithm is also

proposed in this layer to find the synonyms of each
word, as many words have numerous synonyms that
individuals might not be aware of. Algorithm 1 out-
lines the proposed synonymous identification algo-
rithm. It shows that the algorithm follows three main
steps: removing stop words, finding synonyms, and
converting synonyms to their base form. In the re-
move stop words step of the algorithm, stop words
are removed because these words do not have syn-
onyms. Additionally, the non-stop words are con-
verted to their root forms to facilitate the identification
of synonyms. In the find synonyms step, the WordNet
database is used to retrieve a list of synonyms for each
word. Finally, in the convert synonyms to base form
step, each synonym is converted to its lemma (base)
form.

Algorithm 1 Synonymous Identification Algorithm
1: Input: Original data O
2: Output: Synonymous word matrix SW
3: Break the original data into words: Words =

[“word1′′, “word2′′, “word3′′, . . . ]
4: Final keywords = [ ]
5: SW = [][]
6: for i = 1 to Words.length do
7: if Word[i] ̸= stop word then
8: Convert Word[i] to its stemmed form
9: Final keywords.append(Word[i])

10: end if
11: end for
12: for i = 1 to Words.length do
13: Use WordNet database to find the synonym

set for each word and call it synsets
14: for j = 1 to synsets.length do
15: Convert synonymous synsets[j] to lemma

form lemma[j]
16: SW [i][j] = lemma[j]
17: end for
18: end for
19: return SW

4.4 Transportation layer
After preprocessing, the final data must be transferred
to another IoT system, the internet, or a database for
storage and processing. The collected IoT data can
also be sent to and stored in a cloud data center in
this layer. This layer relies on sending data using
IP addresses and port numbers. Various methods can
be used for transmitting and receiving data, including
Wi-Fi, radio-frequency identification (RFID), Blue-
tooth, 3G, 4G, and Zigbee networks. These methods

Mohamed El-Dosuky
International Journal of Agricultural Science 

http://iaras.org/iaras/journals/ijas 

ISSN: 2367-9026 139 Volume 10, 2025



Figure 3: Semantic interoperability flowchart

use different data transfer protocols to transmit data
from one IoT device to another or to a data center over
the internet.

Let us compare important IoT communication
protocols. Message Queue Telemetry Transport
(MQTT) is a widely used, open-source protocol
known for its lightweight nature, utilizing a publish-
subscribe mechanism to ensure efficient data trans-
mission even in low-connectivity environments. Mod-
bus is primarily used for connecting supervisory sys-
tems to remote terminals, allowing data acquisition
and control, especially in industrial settings with pro-
grammable logic controllers (PLCs). Advanced Mes-
sage Queuing Protocol (AMQP) was developed for se-
cure data transmission in financial services, offering
robust security features including advanced authen-
tication. Process Field Network (PROFINET) is de-
signed for industrial automation, facilitating real-time
data exchange between devices over Ethernet. Finally,
Controller Area Network (CAN) bus, developed by
Bosch, is widely used in vehicles and industrial sys-
tems to enable communication between sensors and
devices without the need for an intermediary device.
Each protocol is tailored for specific applications, en-
suring efficient and secure communication in diverse
IoT and industrial environments.

The transport layer faces many security chal-
lenges as it acts as middleware between the network
and IoT systems. Therefore, it is crucial to implement
security techniques to ensure confidentiality, authenti-
cation, and integrity.

Figure 4: Automatic reasoning system with uncer-
tainly

4.5 Semantic reasonings layer
After the collected data are transmitted to other sys-
tems, an expert system is used to infer new knowl-
edge from the transmitted data. Since the collected
data may be incomplete and lack some information, an
automated reasoning expert system with uncertainty
techniques is developed in this layer to enhance the
system with semantic completeness. Figure 4 shows
the flowchart depicting the general steps to design an
expert system capable of inferring new data from in-
complete information and data collected from differ-
ent sources.

Figure 4 shows five steps: identify the problem
domain, build a knowledge base system, build an in-
ference engine, identify uncertainty reasoning meth-
ods, and system maintenance, monitoring, and updat-
ing to develop an expert system with uncertain con-
cepts. These steps are needed to create an expert sys-
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tem capable of automatic reasoning with uncertainty
methods to infer new knowledge from the collected
data. In the identify problem domain step, the prob-
lem that the expert system aims to solve and its pur-
pose are defined. Because IoT devices extract raw,
incomplete data, the expert system will depend on un-
certainty techniques. Therefore, it is crucial to iden-
tify the types of uncertainty the expert system may
face.

In building knowledge base system step, the rules
and facts about the domain must be entered and stored
in the knowledge base by an expert. If new data are
collected from sensors, they must also be stored as
facts about the domain. The process of entering the
rules must include methods for encoding uncertainty
within the system. For example, experts may use
probabilistic rules and fuzzy sets to incorporate un-
certainty concepts. In the build uncertainty inference
engine step, an inference engine must be developed
to execute the appropriate rules in the appropriate sit-
uations, enabling the expert system to respond ap-
propriately. The inference engine must support, han-
dle, and understand uncertainty or incomplete infor-
mation. This inference engine must also provide ex-
planations and reasons for choosing specific rules to
execute. In uncertain cases, if the inference engine
chooses to execute specific rules with a certain prob-
ability, it must output the probability of choosing this
rule and the alternative rules along with their proba-
bilities.

In the identifying uncertainty reasoning meth-
ods step, two different types of reasoning methods
are used to infer new knowledge from existing data:
traditional reasoning methods and uncertainty rea-
soning methods. Two types of traditional reason-
ing methods, rule-based reasoning and case-based
reasoning, are used in the suggested framework to
extract new knowledge without incorporating uncer-
tainty concepts. Rule-based reasoning uses if-then
rules to infer new knowledge, while case-based rea-
soning relies on past experiences and cases to infer
new knowledge. In the context of uncertainty, this pa-
per suggests using three types of reasoning methods:
fuzzy logic, Dempster-Shafer theory, and Bayesian
networks. In the system maintenance, monitoring, and
updating step, the performance of the expert system
must be monitored, and the knowledge base updated
when new knowledge becomes available. In this step,
the expert system is also evaluated to show how effec-
tively it handles uncertainty. Ongoing maintenance is
required to keep the knowledge base current as new
information becomes available.

4.6 Application layer
After the expert system extract new knowledge, the
data and new knowledge are sent to the application
layer. In the application layer, Graphical User Inter-
faces (GUIs) are implemented and designed to help in-
dividuals communicate with IoT devices. Through the
GUI, users can monitor their systems and view the en-
vironmental measurements collected by IoT devices.
Additionally, the results of the expert system and the
probability of choosing the appropriate rule are also
displayed to users through the GUI.

5 Agriculture Case study
Figure 5 shows a circuit diagram that represents an
automated irrigation and climate control system using
an Arduino Uno. It is powered by a 9V battery, which
supplies energy to a water pump controlled via a re-
lay. The system includes various sensors: a soil mois-
ture sensor for monitoring soil hydration, a DS18B20
and a DHT22 sensor for measuring temperature and
humidity, and a photoresistor for detecting light in-
tensity. Soil pH sensor is optional. These sensors
are connected to the Arduino, which processes the
data and controls actuators like the water pump and
a fan based on the readings. An LCD 16x2 display
is also included to display real-time information from
the sensors. The setup is designed to automate envi-
ronmental monitoring and watering tasks.

Figure 6 shows the realization of the proposed
system. It involves a plant setup with some electronic
components for monitoring and automating plant care,
sensors and an Arduino microcontroller.

Table 1 provides semantic annotation using inter-
operable values. The ambient temperature, measured
by a temperature sensor, is recorded at 36.78°C, in-
dicating the surrounding environmental temperature.
The air humidity is 68.49%, which reflects the mois-
ture content in the air. A soil moisture sensor reports
a value of 23.45%, providing insights into the water
content present in the soil. The ambient light inten-
sity is measured at 281.40 Lux, revealing the level of
illumination in the area. Finally, the soil acidity level,
indicated by the soil pH sensor, stands at 5.90, which
reflects the current pH balance of the soil. These sen-
sors collectively provide key environmental data for
monitoring and analysis. Based on the sensor read-
ings, several actions can be taken to optimize the en-
vironment as shown in Table 2. Given the soil mois-
ture content of 23.45%, irrigation should be initiated
to maintain optimal hydration for plant growth. With
the temperature at 36.78°C, the cooling system should
be activated to prevent heat stress. Since the light in-
tensity is measured at 281.40 Lux, turning on the grow
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Figure 5: Proposed Systematic diagram

lights might be necessary to ensure adequate light-
ing for photosynthesis. Additionally, with the soil pH
reading of 5.90, additives may be applied to adjust
the pH level, ensuring a balanced soil condition for
healthy plant development.

Table 3 provides a semantic reasoning example.
The current environmental conditions trigger specific
actions for optimization. Since the soil moisture is
below 30% at 23.45%, it is recommended to irrigate
the field to maintain adequate soil moisture levels.
Additionally, the temperature exceeds 35°C, with a
recorded value of 36.78°C, making it necessary to ac-
tivate the cooling system to regulate the temperature.
The light level is below the threshold of 300 Lux, mea-
sured at 281.40 Lux, suggesting the need to turn on the
grow lights to ensure sufficient illumination for plant
growth. Lastly, the soil pH of 5.90 is outside the opti-
mal range of 6.0 to 7.5, which indicates the soil acidity
level needs adjustment using pH-balancing additives.

Fuzzy logic uses membership functions that con-
sider each event by some degree of occurrence rather
than binary true or false values, which helps the ex-

pert system handle imprecise concepts. Fuzzy mem-
bership functions describe how each point in the input
space (i.e., the agriculture domain) is mapped to a de-
gree of membership between 0 and 1. For the soil
moisture example, the fuzzy sets are described by tri-
angular membership functions (trimf), which are de-
fined by three parameters: the left, center, and right
points. Here are the equations for each fuzzy member-
ship function: Low Soil Moisture (Triangular Mem-
bership Function), defined by the range [0, 0, 30]:

µlow(x) =


1 if x ≤ 0
30−x
30 if 0 < x < 30

0 if x ≥ 30

(1)

Adequate Soil Moisture (Triangular Membership
Function), defined by the range [20, 50, 80]:

µadequate(x) =


1 if x ≤ 20
30−x
30 if 20 < x < 50

0 if x ≥ 50

(2)
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Table 1: Semantic Annotation
Sensor Interoperable Value Unit Meaning

Temperature 36.78 Celsius Ambient temperature
Humidity 68.49 % Air humidity
Soil Moisture 23.45 % Soil moisture content
Light Level 281.40 Lux Ambient light intensity
Soil pH 5.90 pH Soil acidity level

Figure 6: Realization of proposed system

Table 2: Actions to Take
Action

Irrigate the field
Activate cooling system
Turn on grow lights
Adjust soil pH with additives

High Soil Moisture (Triangular Membership
Function), defined by the range [60, 100, 100]:

µhigh(x) =


0 if x ≤ 60
x−60
40 if 60 < x < 100

1 if x = 100

(3)

Figure 7 shows fuzzy membership functions for soil
moisture which are defined across three distinct cat-
egories. For low soil moisture, the membership de-
gree is 1 when the moisture level is at 0%, indicating
complete membership in this category. As soil mois-
ture increases and reaches 30%, the membership de-
gree linearly decreases to 0, remaining at this level for
any moisture content beyond 30%. In the case of ade-
quate soil moisture, the membership degree starts at
0% when the moisture level is at 20% and linearly

Figure 7: Fuzzy Membership Functions for Soil Mois-
ture

increases to 1 at 50%, indicating full membership.
However, this degree decreases back to 0 by 80%.
Lastly, for high soil moisture, the membership degree
remains at 0 below 60%, indicating no membership
in this category, but increases to 1 as the moisture
level reaches 100%, signifying full membership for
high moisture content.

Dempster-Shafer theory is important for IoT ap-
plications because it aims to develop new knowl-
edge from data that come from different sources. In
the context of Dempster-Shafer theory applied to soil
moisture, we can define the key components and equa-
tions that represent how to combine beliefs from dif-
ferent sources regarding the state of soil moisture
(e.g., ”Low,” ”Adequate,” and ”High”). A basic belief
assignment (BBA) is a function that assigns a degree
of belief to each proposition based on the evidence
provided. For soil moisture, the BBA can be repre-
sented as follows:

m : 2θ → [0, 1] (4)

where θ={Low, Adequate, High}
To combine the beliefs from two sources A and B,

we use Dempster’s Rule of Combination. The com-
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Table 3: Semantic Reasoning Example

Condition Explanation Recommendation

Soil moisture less than 30% Soil moisture is 23.45% Irrigate the field
Temperature greater than 35°C Temperature is 36.78°C Activate cooling system
Light level less than 300 Lux Light level is 281.40 Lux Turn on grow lights
Soil pH out of range (6.0-7.5) Soil pH is 5.90 Adjust soil pH with additives

bined belief mC for a proposition can be calculated as
follows:

mC(A) =
1

1−K

∑
B∩C=A

mA(B) ·mB(C) (5)

where K is the conflict measure, that accounts for the
degree of conflict between the two sources. It quan-
tifies how much evidence is incompatible or contra-
dictory. If there is no conflict, K will be close to 0;
if there is significant conflict, K will be higher. K is
defined as:

K =
∑

A∩B=∅

mA(A) ·mB(B) (6)

After calculating the combined beliefs using
Dempster’s rule, it’s important to normalize the results
to ensure that the total belief sums to 1:

mC(A) =
mC(A)

1−K
(7)

Using Dempster’s rule, the combined beliefs for each
proposition would be calculated, considering the con-
flict K and normalizing the results. The specific values
would depend on the actual calculations performed
using the equations above. Figure 8 shows how
Dempster-Shafer theory combines beliefs by provid-
ing a structured way to combine uncertain evidence
from multiple sources, allowing for reasoning about
the soil moisture levels based on varying degrees of
belief. The use of BBAs, combination rules, and con-
flict measures facilitates a nuanced understanding of
the information gathered from different observations.

Bayesian networks, based on Bayes’ rule, esti-
mate the probability of certain outcomes based on re-
lated events. Figure 9 shows the Bayesian network
for soil moisture management which consists of three
nodes: Weather, Irrigation, and Soil Moisture. The
Weather node indicates the likelihood of rain, with
probabilities set at 70% for rain and 30% for no rain.
The Irrigation node reflects the irrigation status, with
a 60% chance of being on and a 40% chance of being
off. The Soil Moisture node assesses the soil’s mois-
ture level based on the conditions from the other two
nodes, incorporating conditional probabilities for low,

Figure 8: Dempster-Shafer Combined Beliefs for Soil
Moisture

adequate, and high moisture levels depending on the
weather and irrigation states. For instance, when it is
raining and irrigation is active, there is a high prob-
ability of adequate moisture, while low moisture is
more likely when it is not raining and irrigation is off.
This structured approach enables informed decision-
making in agricultural practices, optimizing water us-
age based on environmental conditions. The network
can be visualized using directed graphs, providing
clear insights into the relationships and dependencies
among the variables involved in soil moisture man-
agement.

Based on the probabilistic reasoning presented
above, the system is able to suggest actions such as
the actions presented in Figure 10.

6 Conclusion and Future Work
The Internet of Things (IoT) has a significant impact
and has advanced many applications, such as smart
cities, smart homes, agriculture, and healthcare sys-
tems around the world. Despite the substantial impact
of IoT, it still suffers from incomplete data collection
and the inability of IoT devices and sensors to fully
understand the data. Therefore, this paper proposes
a new real-time framework that includes three differ-

Mohamed El-Dosuky
International Journal of Agricultural Science 

http://iaras.org/iaras/journals/ijas 

ISSN: 2367-9026 144 Volume 10, 2025



Figure 9: Bayesian Network for Soil Moisture

Figure 10: Graphical User Interfaces Alert

ent semantic layers to enable IoT devices and sensors
to understand the meaning and source of the collected
data. This framework can be used in any IoT appli-
cation as it relies on techniques suitable for environ-
ments with dynamic behavior. The framework con-
sists of six layers: perception, semantic annotation
and preprocessing, semantic interoperability and on-
tologies, transportation, semantic reasoning, and ap-
plication.

In the perception layer, sensors collect data from
the environment in the form of voltage. These sensors
send the collected data to a microprocessor or micro-
controller device capable of processing the data and
converting it to meaningful information in the seman-
tic annotation and preprocessing layer. In this layer,
metadata is added to the collected raw data, such as
the purpose of the sensors, the sensor ID number, and
the application the sensors are used for. Descriptions
of the collected data are also added to the raw data.
Two semantic algorithms are proposed in the seman-
tic interoperability and ontologies layer: the interoper-
ability semantic algorithm, which facilitates data ex-
change by standardizing file types to allow data to
be sent in any format, and the synonym identifica-
tion algorithm, which finds synonyms of keywords to

help individuals understand unfamiliar concepts. In
the transportation layer, the raw data and metadata
are sent to other IoT devices or cloud computing plat-
forms using various techniques such as WiFi, Zigbee
networks, Bluetooth, and mobile communication net-
works. Because the IoT collected data is often incom-
plete, a semantic reasoning layer is suggested to infer
new knowledge from the existing data. In the seman-
tic reasoning layer, a new expert system based on un-
certainty concepts is proposed to build a knowledge
base system using fuzzy logic, Dempster-Shafer the-
ory, and Bayesian networks to help derive new knowl-
edge in both certain and uncertain cases.

Finally, a Graphical User Interface (GUI) is pro-
posed in the application layer to help users communi-
cate with and monitor IoT sensors, IoT devices, and
the new knowledge inferred, including the probability
of the inferred knowledge and other alternative knowl-
edge with their probabilities, as well as metadata of
each sensor. This framework provides a robust solu-
tion for managing IoT data, ensuring semantic com-
pleteness, and enabling real-time knowledge infer-
ence. The integration of uncertainty reasoning meth-
ods and semantic interoperability techniques makes
this framework a valuable tool for advancing IoT ap-
plications in various domains.

One possible future direction is to extend the pro-
posed framework, providing intricacies of implement-
ing each layer. Another possible direction is securing
the IoT system. The most possible security approach
is to combine blockchain [45], or using cyber-physical
systems [46]. Another future work may extend the
scale of the proposed system using wireless sensor
network [47].
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