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Abstract. The study examines the use of Grover's quantum algorithm to optimize global search problems,

demonstrating its quadratic speedup over classical methods for improved efficiency. The research tackles

practical challenges, including quantum noise, scalability, and resource constraints, by proposing innovative
solutions. The techniques developed integrate quantum search principles into large-scale optimization tasks

across diverse fields. This work lays a foundational framework for applying quantum algorithms to solve

complex scientific and industrial problems.
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1. Introduction

It is becoming more crucial in the world to learn
quantum algorithm, and to improvise, develop
and introduce the methods and algorithms of
solving problems by these algorithms.
Nowadays, the tasks solved by quantum
algorithms are generating more efficient results
than the problems that are solved using other
algorithms [1]. At present, special attention is
paid to the analytical analysis of mathematical
models of these algorithms and the creation of
quantum computers that run on the basis of
quantum algorithms. In quantum computing
(quantum algorithms) the quality (feature) of
the process that is being studied is determined
as a result of direct parallel calculations [2]. In
addition, the solution of the problems that are
difficult to solve or for the ones that are not
possible to be solved algorithmically by
traditional (classic) methods.

Although Grover's algorithm is generally
considered useful for database searching, the
basic ideas underlying this algorithm are
applicable in a much broader context. This
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approach is used to speed up search algorithms
that can build a "quantum oracle" that separates
the needle from the haystack. It uses the term
ancilla (Ancilli are extra bits used to achieve
specific computational goals (such as in
reversible computation)) or auxiliary qubit
(ancilla qubit) to refer to some additional qubits
used by an algorithm.

2. Main Body

This algorithm searches through N =2" an
unordered set of elements in order to find the
element that satisfies some conditions.
Currently, while the best classical search
algorithm on unstructured data takes time
O(N) , Grover's algorithm allows for a

quadratic speedup of search on a quantum
computer in operations just O («m ) [22].

Grover’s search algorithm is considered
to be one of the best methods of quantum
algorithms, and it shows that when the classical
algorithms of quantum system is used, it
depends on the slowness of operation time, and
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that it can be used in order to improve its
quality. In this case, in order to reach a high
speed, Grover’s algorithm bases on the
quantum super-position of the processes [7]. As
numerous quantum algorithms, Grover’s
algorithm also sets off by putting n qubit
registers of the machine into the super-position
that is equal to all the possible 2"cases [8]. It
is important to remember that the amplitude

associated with each possible configuration of

each qubit is equal to —= and the probability of

\/_
being of the 2" state of the system in any state

) 1
is equal to e

All these possible states
correspond to all possible entries in the
database of Grover’s algorithm, and therefore,
starting with a given amplitude assigned to each
element in the search space, each element is
considered  simultaneously in  quantum
superposition and amplitudes are controlled
from there [9].

Along with the superposition of states,
Grover’s algorithm belongs, in general, to the
family of quantum algorithms that use
amplitude amplifiers, which take the advantage
of quantum amplitudes that distinguish
amplitudes from probabilities. The key to these
algorithms is a selective displacement of one
state of quantum system, of its space that satisfy
some kind of condition in each iteration. These
amplitude amplifier algorithms are so unique to
quantum calculating that such feature of
amplitudes has no parallel in classical

probabilities [11].

3. Methods

Grover's algorithm utilizes a quantum register
is the
number of qubits required to represent a search

composed of n - qubits, where n

space of size N =2" . Initially, all qubits are set

to the ground state | 0> :
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(1)

The algorithm begins by generating an
equal superposition of all possible states. This
is achieved using the Hadamard transformation
H®", which applies a Hadamard gate to each
qubit. The resulting state can be mathematically
expressed as:

v)=H"[0)" @

-2

Once the system is in superposition, the
algorithm proceeds with a series of Grover
iterations [23]. These iterations involve two
main operations: phase inversion via the

quantum  oracle O and  amplitude
amplification. The number of Grover iterations
required to amplify the probability of the

correct state to its maximum is approximately
2" . This process ensures that the

probability of observing the correct state
becomes optimal after the total rotation of the

state space by % [23]. The quantum oracle O

serves as a black-box function that marks the
desired solution state. If the system is in the
correct state, the oracle applies a phase shift of
7z , effectively flipping the sign of the
corresponding amplitude. Mathematically, this
action is described as:

%)~
3)
f(x)=0 The

implementation of f(X) is a function that

Here, exact

evaluates to 1 for the correct solution and 0
otherwise. The oracle does not disturb the
system when it is not in the target state but
ensures that the marked state becomes
identifiable during subsequent amplitude
amplification. [23].
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The next part of Grover’s iteration is
called the diffusion conversion, which
performs an average inversion, changing the
amplitude of each state to a value lower than the
average before the transformation, and vice
versa.

Z|o Z|e
Z|o Z|e

2
N N N N

This diffusion conversion H®" consists
of another program of the Hadamard
conversion, followed by a conditional
transformation shift that shifts each state from

|O> to -1, which is, in its own turn, followed by

another Hadamard conversion [10].
Here, the unitary operator of the spatial

shift is represented by 2|0> <O|—I and can be

written in the following two ways.

[2]0){0]-17]0) = 2|0){0]0)~ 110) = |0)
[2]0)(0]=11]x) =2[0){0[x) = 1x) = =|x)
4)

The equation (4) can be written in the
form of equation (5) below, using the formula
from equation (2). In that case, the universal
diffusion conversion is expressed in the form of

(5).

H®"[2|0){0|-ITH®" =
=2H®"[0)(0]H®" —1 =2[y) (v
()

and universal Grover’s iteration gets in the
form of (6).
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[2|w){w|-110
(6)

When considering the running time of
Grover's iteration, the exact running time of the
oracle depends on the specific problem and the
implementation of that problem, so the
reference to O is treated as a single simple
operation [4].

After a sufficient number of iterations of
Grover's iteration are accomplished, a classical
measurement is performed to determine the
result, this completion of the algorithm

continues until the probability O (1) [11].

The steps of Grover’s algorithm are
implemented and summarized as the following
[22]:

Input:

. O|X> =(—1)f(x)|x> is quantum oracle
O , which performs the operation, where

f(X)=0 is f(x,)=1 for all the 0<x<2",

except for X # X,.

e A qubit |0> initiated to state n

e Output: X,

The running time: the operations O(\/2_” )
, with the probability O(1).

Process:

1. The initial state |0)""

2. Using Hadamard conversion for all the
qubits

H®n |O>®n _

3. Using Grover’s iteration R z%\/Z_”

times
2]y )y |- 117 w) =[%)

4. Measuring the register X,
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4. Results

Mathematical solutions of the above-
mentioned information through a specific
example are as follows. Let's say the expression

L X+6
of the function is f(X)=———— and the
2+C0os(X)

oracle accepts values between 0 and 64. The
next step is to consider the case where

N =64=2° is equal, and the desired state X,
is represented by a string of 111101 bits [22].

To describe this process, n=6 consists
of qubits, i.e.
| X) = ,|000000) + | 000001) +
Frerrenns +ag|111111)

where @ - [i) is the amplitude of the state.
Grover's algorithm starts from system 0
1/000000)

and then the Hadamard transform is applied to
obtain an equal amplitude associated with each

state — so that the solution to the

N

problem is equal to the probability of being in
one of the 64 possible states.

H*|000000) = l| 000000) + l| 000001)+ +

Froene —|111111 Z|

Three Grover iterations are sufficient to
solve the problem, ie.

%\m=% 64 =27 ~ 6,28, which turns up to

64 iterations.

At each iteration, the quantum oracle O
must first be invoked, followed by an inversion
by averaging or diffusion transformation. The
oracle query negates the condition amplitude

|X,) in which case [111101) gives the
configuration [22-23].
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\x>=1\000000>+1\000001>+ ...... —1\111101>+1\111111>
8 8 8 8

In the next «case, a diffusion

is performed,

which increases the amplitudes from the mean
value, decreases it if the difference is negative

[2]w)(w]- l][lw}—%hnmg}:

11
=2l )y lv)-ly)-1clw)+ 111101 =

15 1
— —|111101) =
16 >+4| 0>

151 1 1
+—(111101 —[111101) =
-1 5 g+ giron [+ jinon

X#Xg

111101
128Z| > 128| 0>

Now the |X> used above will be:
|x) = 1—5|000000) + £|000001) oot
128 28
+ﬂ|111101)+1—5|111111)
128 128

This completes the first iteration. We

apply the same two changes in the second
iteration.

12 1000001) +......—
28

—7|111101>+£|111111>:
128
15
111101) -
~p 2 ho-alion
63
—|111101):1—52_(;|x)—

15

31
111101 w)——1 111101

After the Oracle query and applying the

diffusion transformation:
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C2lv)tvl-1][ 2

31
——|111101) |=
)=o)

15\ 15 31 31
=|y) - |p) - ——|w)+=[111101) =
s 1v) 16 V) =356 6l )

209
=29y 2 10n) =
556Vt ggl11L10D)

209{ Z| —|111101} 1|111101>=

256
2093 1201
2564 Z| > 2048

This completes the second iteration. We
apply the same two changes to the third

iteration:
| )— |000000)+ ....... -
—%Ulllm) ;22 |111111>_
209 1410
204SZ| )——|111101>_
=29y - 22 111101
" 256 1024

After the third time Oracl query and
applying the diffusion transformation:

209 705
2 -1 ||— 111101
[2lv)v]-1]| o) - oo |-
2639 25199
111101
327682| 327 68| >

By repeating the above process 2 more
times, we get the result after the Oracle query
and after applying the diffusion transformation.
In this case, when the system is observed, the
probability of measuring the correct solution

state |111101) is ~98% . The probability of

measuring the wrong state is ~ 0,2%.

The above mathematical solutions are
based on the results obtained after executing the
program on a classical computer using a
quantum algorithm. First, the program creates a
superposition state [24-25].
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[[0.125]
[0.125]
[0.125]
[0.125]
[0.125]

[0.125]]
Second, the oracle O determines the

maximum | l//>

And so, O|1//>Q(t) =(-D'™ |1//>Q(t) when

applied, the following superposition condition
is obtained:

[[ 0.125]

[ 0.125]

[ 0.125]
[-0.125]
[ 0.125]
[ 0.125]]

This second step indicates the number of
repetitions given. Grover's maximum number
of repetitions is calculated as follows:

Z o
4

n the number of qubits or the length of
the quantum chromosome, so n=6 in the
example of the function described in the
problem [18].

As a result of repeating the second step

[[0.1171875]

[0.1171875]
[-0.3671875]
[0.1171875]
[0.1171875]]
In the third step, the oracle O determines

the maximuml |W> and the following results

are obtained as a result of iteration.
Fourth and last, Grover's diffusion
operator locates the chromosome with the

specified state at |w>Qm . Therefore, the
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following process |1//>Qm = G|1//>Q(t) execution
results [25].

[[ 0.0539875 ]
[ 0.0539875 ]

[ 0.0539875 ]
[ 0.0539875 ]
[-0.90353584]
[ 0.0539875 ]
[ 0.0539875 1]
In the next step, we get the result
[[0.0240649 ]
[ 0.0240649]

[ 0.0240649 ]
[ 0.98158824]
[ 0.0240649 ]
[ 0.0240649 1]

QM
v)
pointed to by the maximum chromosome is
obtained [24].

Finally, when done, the state

5. Discussion
As you can see from Figure 1 in this article,
solving the problem leads to four iterations of

Grover's iteration, 1.e.,

%W:%J@:zmé,zg,which goes up to

6 iterations. At each iteration, it first uses the
quantum oracle O, and then performs an
inversion on the average or diffusion transform.
It is clear from the process of solving the
problem  mathematically that  Grover's
algorithm makes it easier to reach the solution
by increasing the amplitude. That is, in our
problem, the optimal solution of the given
function is considered to be 0.98.
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6. Future Work and Research
Challenge

In this article, the main goal of obtaining results
is the process of solving the problem of global
optimization through algorithms, and the extent
to which the current information about the
subject of research is modeled of the method of
solving the problem of global optimization
through quantum algorithms it was considered
that it is important to ensure that it is used for
the intended purpose, that is, the adequacy of
the model. The used quantum algorithm is
distinguished by the fact that it solves the
optimization problem faster than classical
computers, and we achieved the result set
before us. The obtained results proved to be the
solution to the problem. We emphasize that the
algorithm proposed here can be easily
implemented in near-future devices.

Amplitude Changes in Grover's Algorithm (N=64)

2.00 —e— Target State (|111101>)
~®- Other States

0.00 o S | S .

a 1 2 4 5 6

3
Iteration Number

Figure 1. Amplitude change graph.

Probability Changes in Grover's Algorithm (N=64)

Target State

Rteration Number

Figure 2. Probability change graph.

7. Conclusion

Grover’s algorithm has established itself as one
of the most important paradigms in quantum
computing, offering a quadratic speedup for
searching within an unstructured dataset [24-
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25]. In the example discussed in this paper, the
probability of locating the target state after six
iterations approaches 0.999, clearly
demonstrating its superiority over classical
algorithms. The amplitude adjustment is
governed by the principle of geometric rotation,
which increases the probability of the target
state using a diffusion operator, while the
amplitudes of the other states decrease to
negative values [3]. This process is based on the
technique of quantum amplitude amplification,
derived from quantum superposition and phase
manipulation. The success of the algorithm
depends on the accuracy of the oracle function
and the optimal number of iterations, which
requires synchronization of quantum systems.
Overall, this algorithm serves as a crucial
foundation for future advancements in quantum
computing [23].
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