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Abstract. The study examines the use of Grover's quantum algorithm to optimize global search problems, 
demonstrating its quadratic speedup over classical methods for improved efficiency. The research tackles 
practical challenges, including quantum noise, scalability, and resource constraints, by proposing innovative 
solutions. The techniques developed integrate quantum search principles into large-scale optimization tasks 
across diverse fields. This work lays a foundational framework for applying quantum algorithms to solve 
complex scientific and industrial problems. 
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1. Introduction 

It is becoming more crucial in the world to learn 
quantum algorithm, and to improvise, develop 
and introduce the methods and algorithms of 
solving problems by these algorithms. 
Nowadays, the tasks solved by quantum 
algorithms are generating more efficient results 
than the problems that are solved using other 
algorithms [1]. At present, special attention is 
paid to the analytical analysis of mathematical 
models of these algorithms and the creation of 
quantum computers that run on the basis of 
quantum algorithms. In quantum computing 
(quantum algorithms) the quality (feature) of 
the process that is being studied is determined 
as a result of direct parallel calculations [2]. In 
addition, the solution of the problems that are 
difficult to solve or for the ones that are not 
possible to be solved algorithmically by 
traditional (classic) methods.   

Although Grover's algorithm is generally 
considered useful for database searching, the 
basic ideas underlying this algorithm are 
applicable in a much broader context. This 

approach is used to speed up search algorithms 
that can build a "quantum oracle" that separates 
the needle from the haystack. It uses the term 
ancilla (Ancilli are extra bits used to achieve 
specific computational goals (such as in 
reversible computation)) or auxiliary qubit 
(ancilla qubit) to refer to some additional qubits 
used by an algorithm. 

 
2. Main Body 

This algorithm searches through 2nN  an 
unordered set of elements in order to find the 
element that satisfies some conditions. 
Currently, while the best classical search 
algorithm on unstructured data takes time 

( )O N , Grover's algorithm allows for a 
quadratic speedup of search on a quantum 

computer in operations just  O N  [22]. 

Grover’s search algorithm is considered 
to be one of the best methods of quantum 
algorithms, and it shows that when the classical 
algorithms of quantum system is used, it 
depends on the slowness of operation time, and 
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that it can be used in order to improve its 
quality. In this case, in order to reach a high 
speed, Grover’s algorithm bases on the 
quantum super-position of the processes [7]. As 
numerous quantum algorithms, Grover’s 
algorithm also sets off by putting n  qubit 
registers of the machine into the super-position 
that is equal to all the possible 2𝑛cases  [8]. It 
is important to remember that  the amplitude 
associated with each possible configuration of 
each qubit is equal to 1

√2𝑛
  and the probability of 

being of the 2𝑛 state of the system in any state 
is equal to 1

2𝑛
.  All these possible states 

correspond to all possible entries in the 
database of Grover’s algorithm, and therefore, 
starting with a given amplitude assigned to each 
element in the search space, each element is 
considered simultaneously in quantum 
superposition and amplitudes are controlled 
from there [9].   

Along with the superposition of states, 
Grover’s algorithm belongs, in general, to the 
family of quantum algorithms that use 
amplitude amplifiers, which take the advantage 
of quantum amplitudes that distinguish 
amplitudes from probabilities. The key to these 
algorithms is a selective displacement of one 
state of quantum system, of its space that satisfy 
some kind of condition in each iteration. These 
amplitude amplifier algorithms are so unique to 
quantum calculating that such feature of 
amplitudes has no parallel in classical 
probabilities [11]. 

 
3. Methods 

Grover's algorithm utilizes a quantum register 
composed of n  - qubits, where n  is the 
number of qubits required to represent a search 
space of size 2nN  . Initially, all qubits are set 
to the ground state 0 :  

                             0 0n
                                 

(1) 
The algorithm begins by generating an 

equal superposition of all possible states. This 
is achieved using the Hadamard transformation

nH , which applies a Hadamard gate to each 
qubit. The resulting state can be mathematically 
expressed as: 
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Once the system is in superposition, the 
algorithm proceeds with a series of Grover 
iterations [23].  These iterations involve two 
main operations: phase inversion via the 
quantum oracle O  and amplitude 
amplification. The number of Grover iterations 
required to amplify the probability of the 
correct state to its maximum is approximately

2
4

n
 . This process ensures that the 

probability of observing the correct state 
becomes optimal after the total rotation of the 

state space by 
4


 [23]. The quantum oracle O  

serves as a black-box function that marks the 
desired solution state. If the system is in the 
correct state, the oracle applies a phase shift of 
 , effectively flipping the sign of the 
corresponding amplitude. Mathematically, this 
action is described as: 

        
( )( 1) f xx x                           

(3) 
Here, ( ) 0f x  . The exact 

implementation of ( )f x  is a function that 
evaluates to 1 for the correct solution and 0 
otherwise. The oracle does not disturb the 
system when it is not in the target state but 
ensures that the marked state becomes 
identifiable during subsequent amplitude 
amplification. [23].  
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The next part of Grover’s iteration is 
called the diffusion conversion, which 
performs an average inversion, changing the 
amplitude of each state to a value lower than the 
average before the transformation, and vice 
versa. 
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This diffusion conversion nH  consists 
of another program of the Hadamard 
conversion, followed by a conditional 
transformation shift that shifts each state from 
0  to -1, which is, in its own turn, followed by 

another Hadamard conversion [10]. 
Here, the unitary operator of the spatial 

shift is represented by 2 0 0 I and can be 

written in the following two ways.     
                       

[2 0 0 ] 0 2 0 0 0 0 0

[2 0 0 ] 2 0 0

I I

I x x I x x

   

    
     

(4) 
The equation (4) can be written in the 

form of equation (5) below, using the formula 
from equation (2). In that case, the universal 
diffusion conversion is expressed in the form of 
(5). 

                                                     
[2 0 0 ]

2 0 0 2

n n

n n

H I H

H H I I 

 

 

 

   
               

(5) 
and universal Grover’s iteration gets in the 
form of (6). 

                    [2 ]I O                          

(6) 
When considering the running time of 

Grover's iteration, the exact running time of the 
oracle depends on the specific problem and the 
implementation of that problem, so the 
reference to O  is treated as a single simple 
operation [4]. 

After a sufficient number of iterations of 
Grover's iteration are accomplished, a classical 
measurement is performed to determine the 
result, this completion of the algorithm 
continues until the probability  1O [11]. 

The steps of Grover’s algorithm are 
implemented and summarized as the following 
[22]:  

Input: 
 

( )( 1) f xO x x   is quantum oracle 

O , which performs the operation, where 
( ) 0f x   is 0( ) 1f x   for all the 0 2nx   , 

except for 0x x .  

 A qubit 0  initiated to state n 

 Output: 0x   

The running time: the operations ( 2 )nO

, with the probability (1)O . 
Process: 
1. The initial state  0 n   

2. Using Hadamard conversion for all the 
qubits 

2 1
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3. Using Grover’s iteration  2
4

nR


  

times 

0[2 ]RI x      

4. Measuring the register 0x  
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4. Results 

 

Mathematical solutions of the above-
mentioned information through a specific 
example are as follows. Let's say the expression 

of the function is 6( )
2 s( )

x
f x

co x





 and the 

oracle accepts values between 0 and 64.  The 
next step is to consider the case where 

664 2N    is equal, and the desired state 0x  
is represented by a string of 111101 bits [22]. 

  To describe this process, 6n   consists 
of qubits, i.e. 

0 0

63

000000 000001

............ 111111

x  



  

 
 

where ia  - i  is the amplitude of the state. 

Grover's algorithm starts from system 0 
1 000000  

and then the Hadamard transform is applied to 
obtain an equal amplitude associated with each 

state 1 1 1
864N

    so that the solution to the 

problem is equal to the probability of being in 
one of the 64 possible states. 

6

63

0

1 1000000 000000 000001
8 8

1 1...... 111111
8 8 x

H

x 


   

   
  

Three Grover iterations are sufficient to 
solve the problem, i.e. 

64 2 6,28
4 4

N
 

   , which turns up to 

64 iterations. 
At each iteration, the quantum oracle O 

must first be invoked, followed by an inversion 
by averaging or diffusion transformation. The 
oracle query negates the condition amplitude 

0x  in which case 111101 gives the 

configuration [22-23]. 

1 1 1 1000000 000001 ...... 111101 111111
8 8 8 8

x     

 
In the next case, a diffusion 

transformation 2 I   is performed, 
which increases the amplitudes from the mean 
value, decreases it if the difference is negative 

0

63

0

63

0

22 111101
8
1 12 111101

16 4
15 1 111101
16 4

15 1 1 1111101 111101
16 8 8 4

15 47 111101
128 128

x
x x

x

I

x

x

  

    








 
       

 

    

  

 
    
 
  

 





 

Now the x  used above will be: 

15 15000000 000001 ......
128 128

47 15111101 111111
128 128

x    

   

This completes the first iteration. We 
apply the same two changes in the second 
iteration. 

63

0
63

0

15 15000000 000001 ......
128 128

47 15111101 111111
128 128
15 15 111101

128 128
47 15111101

128 128
31 15 31111101 111101
64 16 64

x

x

x

x

x







   

  

  

  
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


 

After the Oracle query and applying the 
diffusion transformation: 
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63

0

63

0

15 312 111101
16 64

15 15 31 31 111101
8 16 256 64
209 31 111101
256 64
209 1 1 31111101 111101
256 8 8 64
209 1201
256 2048

x

x

I
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x
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 

 
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This completes the second iteration. We 
apply the same two changes to the third 
iteration: 

0

63

0

209 000000 .......
2048

1201 209111101 .... 111111
2048 2048
209 1410 111101
2048 2048

209 705 111101
256 1024

x
x x

x

x






  

   

  
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After the third time Oracl query and 

applying the diffusion transformation: 

63

0

209 7052 111101
256 1024

2639 25199 111101
32768 32768x

I

x
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

 
       

 

 

 
By repeating the above process 2 more 

times, we get the result after the Oracle query 
and after applying the diffusion transformation. 
In this case, when the system is observed, the 
probability of measuring the correct solution 
state 111101 is 98% . The probability of 

measuring the wrong state is 0,2% . 
The above mathematical solutions are 

based on the results obtained after executing the 
program on a classical computer using a 
quantum algorithm. First, the program creates a 
superposition state [24-25]. 

[[0.125] 
[0.125] 
[0.125] 

... 
[0.125] 
[0.125] 
[0.125]] 

Second, the oracle O  determines the 
maximum   

And so, ( ) ( )( )( 1)Q t Q tf xO     when 

applied, the following superposition condition 
is obtained: 

[[ 0.125] 
 [ 0.125] 

... 
[ 0.125] 
[-0.125] 

 [ 0.125] 
[ 0.125]] 

This second step indicates the number of 
repetitions given. Grover's maximum number 
of repetitions is calculated as follows: 

2
4

n
 

n  the number of qubits or the length of 
the quantum chromosome, so 6n  in the 
example of the function described in the 
problem [18].  

As a result of repeating the second step 
[[0.1171875] 

... 
[ 0.1171875] 
 [-0.3671875] 

 [ 0.1171875] 
 [ 0.1171875]] 

In the third step, the oracle O  determines 
the maximuml   and the following results 

are obtained as a result of iteration. 
Fourth and last, Grover's diffusion 

operator locates the chromosome with the 
specified state at  ( )Q t

 . Therefore, the 

Sh. A. Toirov
International Journal of Applied Physics 

http://www.iaras.org/iaras/journals/ijap

ISSN: 2367-9034 52 Volume 11, 2026



following process ( ) ( )Q t Q t
G   execution 

results [25]. 
 
 

[[ 0.0539875 ] 
 [ 0.0539875 ] 

... 
[ 0.0539875 ] 
 [ 0.0539875 ] 
 [-0.90353584] 

 [ 0.0539875 ] 
 [ 0.0539875 ]] 

In the next step, we get the result 
[[0.0240649 ] 
[ 0.0240649] 

... 
[ 0.0240649 ] 
[ 0.98158824] 

[ 0.0240649 ] 
[ 0.0240649 ]] 

Finally, ( )Q t
  when done, the state 

pointed to by the maximum chromosome is 
obtained [24]. 

 
5. Discussion 
As you can see from Figure 1 in this article, 
solving the problem leads to four iterations of 
Grover's iteration, i.e., 

64 2 6,28
4 4

N
 

   , which goes up to 

6 iterations. At each iteration, it first uses the 
quantum oracle O, and then performs an 
inversion on the average or diffusion transform. 
It is clear from the process of solving the 
problem mathematically that Grover's 
algorithm makes it easier to reach the solution 
by increasing the amplitude. That is, in our 
problem, the optimal solution of the given 
function is considered to be 0.98. 

 
 
 
 

6. Future Work and Research 

Challenge 

In this article, the main goal of obtaining results 
is the process of solving the problem of global 
optimization through algorithms, and the extent 
to which the current information about the 
subject of research is modeled of the method of 
solving the problem of global optimization 
through quantum algorithms it was considered 
that it is important to ensure that it is used for 
the intended purpose, that is, the adequacy of 
the model. The used quantum algorithm is 
distinguished by the fact that it solves the 
optimization problem faster than classical 
computers, and we achieved the result set 
before us. The obtained results proved to be the 
solution to the problem. We emphasize that the 
algorithm proposed here can be easily 
implemented in near-future devices. 

 
Figure 1. Amplitude change graph. 

 

 
Figure 2. Probability change graph.   

 
7.  Conclusion 

Grover’s algorithm has established itself as one 
of the most important paradigms in quantum 
computing, offering a quadratic speedup for 
searching within an unstructured dataset [24-
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25]. In the example discussed in this paper, the 
probability of locating the target state after six 
iterations approaches 0.999, clearly 
demonstrating its superiority over classical 
algorithms. The amplitude adjustment is 
governed by the principle of geometric rotation, 
which increases the probability of the target 
state using a diffusion operator, while the 
amplitudes of the other states decrease to 
negative values [3]. This process is based on the 
technique of quantum amplitude amplification, 
derived from quantum superposition and phase 
manipulation. The success of the algorithm 
depends on the accuracy of the oracle function 
and the optimal number of iterations, which 
requires synchronization of quantum systems. 
Overall, this algorithm serves as a crucial 
foundation for future advancements in quantum 
computing [23]. 
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