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1 Introduction 
 

Wave-particle interactions underlie plasma physics 
and accelerator theory. Current trends in accelerator 
theory are to increase the field strengths of 
electromagnetic waves that interact with accelerated 
particles. This allows for a reduction in the size of 
modern accelerators. However, at field strengths 
exceeding 104 – 105 V/cm (depending on the 
duration), breakdown occurs in accelerator elements, 
and the material of these elements is destroyed. 
Therefore, current efforts by physicists are aimed at 
finding ways to implement mechanisms and 
schemes for accelerating particles in plasma or, even 
better, in a vacuum. There are many works devoted 
to the study of the features of the particle 
acceleration process in plasma and in a vacuum.  
            The simplest and most fundamental scheme 
of interaction of electromagnetic waves in a vacuum 
is the problem of particle dynamics in the field of 
plane electromagnetic waves in a vacuum. Many 
ideas about particle dynamics in such a scheme are 
based on the results of works [1-5]. See also [6-8]. 
These works consider the dynamics of  charged 
particles in the field of a plane electromagnetic wave 
in a vacuum. Moreover, the wave vector of the wave 
has only one component  0,0, zk k . The main 
result of these works is the formation of the idea that 
the effective interaction of charged particles with the 
field of such a wave and the acceleration of particles 
can occur only over a limited time interval. The 
process of particle acceleration after a certain time 
interval is replaced by the deceleration of particles. 
In the frame of reference in which the particle is at 

rest on average, the trajectory of the particles 
describes a closed figure - an eight [6]. 
          In the works [9-10] it was found that if a plane 
electromagnetic wave has a wave vector that 
contains several components that make it up, for 
example  ,0,x zk k k , then even at x zk k the 
dynamics of the particles can change qualitatively. 
Conditions appear that allow the charged particles to 
be captured and accelerated. In these works, not only 
was the fact of the capture and acceleration of 
charged particles by the field of a plane 
electromagnetic wave in a vacuum discovered, but 
the conditions for such capture and acceleration 
(resonant interaction conditions) were also found. 
The numerical results confirmed the authors' 
considerations. 
      However, the constructed mathematical model of 
such capture and acceleration does not describe this 
process fully enough. In particular, the resonance 
conditions found do not contain the main bifurcation 
parameter xk . This parameter is contained only in the 
resonance weight. By the concept of resonance 
weight, we mean the coefficients that are included in 
the right-hand side of the equations for the momenta 
and for the energy of particles. This leads to the fact 
that the dynamics of particle motion determined 
within the framework of this model may differ 
significantly from that which follows from the 
numerical results. The resulting mathematical model 
in many ways resembles mathematical models of 
particle dynamics in cyclotron resonances. 
Moreover, the method for constructing these models 
is similar.      
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         In this paper we will use another method for 
obtaining the conditions for the capture and 
acceleration (resonance conditions) of electrons in a 
vacuum by a field of plane electromagnetic waves of 
arbitrary polarization in a vacuum. This new 
approach allows us to more clearly clarify the 
physical content of the mechanism of resonant 
interaction of a plane wave with charged particles in 
a vacuum. 
               Below, in the second section, the problem 
statement is presented, expressions for the fields are 
given, and equations that determine the dynamics of 
the particles are presented. In the third section, the 
well-known problem of the dynamics of electrons in 
the field of a plane electromagnetic wave in a 
vacuum is considered. This wave has only one 
component of the wave vector. Rigorous analytical 
solutions are obtained that are valid in the laboratory 
system. These solutions do not contain the 
possibility of capturing and accelerating particles by 
the field of such a wave. There is only oscillatory 
dynamics of the particles. The particles become 
nonlinear oscillators.  
      The solutions obtained in this section are used in 
the next (fourth) section as a zero approximation in 
the small parameter 1xk  . This section considers 
the presence of a small transverse component of the 
wave vector of the wave x zk k . Analysis of the 
phase relationships of the wave and particle shows 
the presence of stable stationary phases. The 
conditions for the appearance and existence of these 
stable and stationary phases determine the 
conditions for the capture of particles by the wave 
field. These conditions are the conditions for the 
resonant interaction of the wave with electrons. 
      In conclusion, the most important results are 
formulated and the place of the obtained results 
among known ones is discussed.  

 
2  Statement of the Problem and Basic 

Equations 

 
Consider a charged particle that moves in the field of 
a plane electromagnetic wave, which in the general 
case has the following components: 

0Re( exp( )),

Re exp( )

E E i t ikr
cH kE i t ikr






 

      

  .         (1)
 

Where 0 0E E   ,  , ,x y zi     - polarization 
vector of the wave. 
Vector equation of motion of charged particles: 

         dp e peE H
dt c 

 
   

 
 .              (2)                                                     

Without loss of generality, one can choose a 
coordinate system in which the wave vector of the 
wave has only two components xk  and zk . For 
follows, it is convenient to use the following 
dimensionless dependent and independent variables:

/p p mc , t  ,  /r r c . It is also 
convenient to use the expression for the double cross 
product:     p k k p k p          

. 

The equations of motion in these variables will be as 
follows: 

      1 Re Rei idp kp ke p e
d

  
  

 
       

 
p ,                                                                        

          ,dr pv
d 

   1d kp
d



 

                       (3) 

where     ,  0( / )eE mc  , kr   , k - is 
the unit vector in the direction of the wave vector, 

2 1 2(1 )p   is the dimensionless energy of the 
particle (measured in  units 2mc ), p -is the 
momentum of the particle. 
Multiplying the equation (3) by p , we obtain a 
useful equation that describes the change in the 
energy of a particle: 

            Re id v e
d





                       (4)                                           

Equations (2) and (3) have well-known integrals: 
 

 0
0 0

Re

Re =const

i

i

p i e k

p k i e





 

 

  

  
                                 (5) 

 
Index "0" denotes the values of the initial variables. 
 
3  Precise Solutions  
 
Let us first consider the case of particle dynamics, 
which is widely known [6]. 
For this, we will assume that the wave with which 
the particle interacts propagates in a vacuum along 
the axis z . The wave vector of such a wave has only 
one component  0,0, , 1z zk k k  . The remaining 
components of the wave vector are equal to zero. 
       Next, in the next section, we will consider that 
the wave has small transverse components of the 
wave vector (  ,0, , 1x z xk k k k   ). We will take 
this feature of the wave into account only in the 
phase dynamics of particles. The dynamics of the 
particles will change qualitatively. Conditions for 
their capture in the process of long-term acceleration 
will appear. In mathematics, such systems are known 
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and are called ill-conditioned systems. In physics, a 
qualitative change in dynamics is called a 
bifurcation. Therefore, the parameter 1xk  can be 
called a bifurcation parameter. 
          Looking at equation (3), it is easy to see that 
without loss of generality in this case it is convenient 
to choose such components of the particle 
momentum   ,p p p , p k  . 

Let's consider that   0k   ;

     p p p p            p  ;  0,0, 1k k   
... Then the system of equations (3) takes the form: 

             
1 Re idp

p e
d


 

   p  

 1 Re cosidp kp e
d

   
 


 

 
     
 

   (6)                                     

After dividing the left and right sides by the 
derivative of the wave phase ( /d d   ), system 
(6) can be rewritten: 

                  
 

 
1 Re idp

p e
d


  

 
   

p  

cosx
x

dp
d

 


        siny
y

dp
d

 


           (7)                                             

Considering that in the case under consideration 
  const C    , we easily find the following 
solutions for the momentum components: 
  0 0( ) sin sinx x xp p       , 

 0 0( ) cos cosy y yp p       ,    
1 cos sinx x y y

dp
p p

d C
   


                               (8) 

For simplicity, and for further comparison with 
known results, we will assume that 0 00, ( ) 0p    
, and that the wave has a linear polarization (

, 0x y z       ). Then (8) can be rewritten 

sinxp   ,   cos 0y yp   
2

sin cos
dp
d C


 


 ;  

 
2 2

2cos 1 cos 2
2 4zp
C C
 

                         (9) 

To compare the obtained results with known ones 
[7], solutions (9) can be supplemented with 
expressions for the coordinates. 

cosxx





 
  

 
,  

 

2

2

1 sin 2
24

z 
 




  
      

  (10)                         

Here 0 0  . 
Solutions (7) and (8) practically coincide with those 
given by Landau [6]. The difference is that the 

obtained solutions are valid in the whole space, and 
not only in the frame of reference in which the 
particles are at rest on average. Moreover, the 
particle trajectory describes a figure eight in the 
momentum space (see Figure 1). In the coordinate 
space, in the general case, these eights are displaced 
(Fig. 2). 

 
Figure 1. Particle trajectory in momentum 
space.    2, 0x y z      0.0xk  .  Initial 
conditions: 0x y zx y z p p p        
 

 

 
Figure 2. . Particle trajectory in coordinate  
space.   2, 0x y z      0.0xk  .   
Initial conditions: 0x y zx y z p p p       

 

Such solutions firstly come from the works of D.M. 
Volkov [1] and V.I. Ritus [2]. Within the framework 
of classical electrodynamics, they are presented in 
[3,4]. Such solutions are often referred as exact 
solutions.  These solutions, together with the results 
described in the monograph [6], as well as the well-
known Lawson-Woodward theorem [5,7,8], have 
formed a widespread belief that the acceleration of 
charged particles by the field of electromagnetic 
waves in  vacuum is impossible. Below we will show 
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that these solutions do not exhaust all solutions of 
the problem.  
 
4  Conditions of Particle Capture by a 

Field of Plane Wave in Vacuum. 
 
In this section we will consider a small transverse 
component of the wave vector ( 1xk   ). In [9-11] it 
was shown that taking this component of the wave 
vector into account can qualitatively change the 
dynamics of particles. Expressions were obtained for 
the conditions under which a plane wave in a 
vacuum captures electron and effectively accelerates 
them. These conditions show that such capture into 
acceleration occurs when the wave has a transverse 
component of the wave vector ( 0k   ), with a 
sufficiently high wave field strength, and with a 
sufficiently high initial longitudinal momentum. 
Numerical studies show that the most important of 
these parameters is the presence of a transverse 
component of the wave number. In addition, these 
conditions are obtained as a result of a certain change 
of variables, and the conditions themselves do not 
explicitly contain a dependence on the magnitude of 
the transverse wave vector. The conditions for the 
emergence of any processes rarely reflect all the 
features of the process itself. Therefore, it can be 
expected that the conditions obtained in [9-11] can 
be change by other conditions that can more fully 
reflect the process of particle capture and 
acceleration.  Let us show that such conditions can 
be obtained. We will start from equation (3), in 
which we set 1, 1x zk p  . The system of 
equations for the impulses will be practically no 
different from the system of equations (6): 

                                                     

 1 Re cosix
x x

dp kp e
d

   
 

 
     
 

 

    Re iz zdp k p e
d


 

   p                                     (11)                          

Where     z xk z k x    ,   cosxx





 
  

 
  

The main difference from the system (6) is that we 
considered one of the transverse components of the 
wave vector ( 0xk   ) in the expression for the wave 

phase. In addition, as an expression for the 
transverse coordinate of the particle, we took the 
expression that was obtained in the previous section 
( 0xk   ). Thus, using the results of the previous 
section, we considered that the electrons in the wave 
field became oscillators (nonlinear oscillators). 
Moreover, this fact will primarily affect the phase 
relationships between the wave and the particles. 
Therefore, below we will consider the presence of 
the transverse component of the wave vector only in 
the phase dynamics of the particles. It is easy to see 
that taking this value into account in other places of 
the equations changes practically nothing. Let us 
consider the expression for the phase in more detail. 
It can be rewritten as 

         cosx
z xk z k






 
     

 
           (12)                                       

The condition for resonant interaction will be the 
condition of stationarity of this expression (

; 0const    ): 

    1 1 sinx x
z z

k
k v





  
      

  
         (13)                                    

This is the main result of this section. 

The main feature of condition (13) is determined by 
the second factor. It can be said that condition (13), 
considering the second factor, represents the Adler 
equation. The stationary points of equation (13) (the 
resonant value of the phase) can be determined from 
(13): 

                                                             
1arcsin arcsin

2x x xk k


  


   
     

   
     (14)                       

The width of particle capture in acceleration (the 
width of nonlinear resonance) can be easily 
determined from the same equation (13):         

                   cosb                     (15)             

   Where     ,   2x x
x x

k
b k


 


  .  

The equations that determine the momenta of 
particles can be written as 
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cosz
x

dp
d




                         

   1 cosx
z x x

dp
v k

d



                                  (16) 

  Their solutions:      

 cosz xp    ,          1 cosx z x xp v k             

Let us compare the obtained results with the results 
of previous studies.  

1. First, let us compare the resonance conditions 
(particle capture and acceleration). In the works [9-
11], the process of electron capture and acceleration 
by the field of a plane electromagnetic wave in a 
vacuum was analytically and numerically 
discovered (apparently for the first time). The 
obtained results convincingly demonstrated the 
possibility of particle capture and acceleration. 
However, the obtained mathematical models did not 
describe the numerical results well in all details. In 
particular, the following expression was obtained to 
determine the capture conditions                                                           

 1 1 sinz zk v
p




  
      

   
                              (17)                     

Formula (17) was obtained for the case of a linearly 
polarized wave that propagates along the axis z and 
that has only one component of the electric field (

 0 0, ,0yE E i  ). From a comparison of this 
expression with (13), it is evident that the general 
structure of these conditions is the same – this is the 
Adler equation. The difference is that this condition 
(17) does not contain the main bifurcation parameter 

xk . Condition (13) contains this parameter explicitly. 
The size of the capture region also changes. 

2.The right-hand sides of the truncated equations for 
the momentum components in [9-11] contain Bessel 
functions:   

0 ( / ) cos( )z
x

dp v J k p
d

 


                            (18)              

 

 
Figure 3. Argument of Bessel functions 

/xk p  ,  2   0.1xk   
 

 
Figure 4.  The Bessel functions themselves  
decrease rapidly 

/xk p  ,  2   0.1xk    
 
 
 

However, such a feature does not manifest itself in 
numerical studies. Indeed, as can be seen in Figure 
3, the arguments of the Bessel functions grow 
rapidly. The Bessel functions themselves decrease 
rapidly (see Fig.4). Therefore, the acceleration 
process quickly ceases. This contradicts the 
numerical results. Formulas (16) describe the 
numerical results much better (see Fig.6) 

It should be noted that not all particles captured by 
the wave field are accelerated by this field. Some of 
them may be slowed down. As an example, Figures 
5 and 6 show the time dependence of the longitudinal 
momentum of two particles. These particles differ 
only in their initial position: 0z  Fig. 5 and 1z 
Fig. 6. The greater the wave force parameter, the 
fewer the slowed down particles. 

 
Figure 5.  Time dependence of the 
longitudinal momentum of a particle under 
the following initial conditions:  

1; 0.1xk   ; 
0.1; 10; 0; 0x y zp p p x y z        
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Figure 6.    Time dependence of the 
longitudinal momentum of a particle under 
the following initial conditions:   

1; 0.1xk   ; 
0.1; 10; 0; 1x y zp p p x y z       

 

It is of interest to study in more detail the condition 
of phase synchronism of the wave with particles 
(13). This condition was obtained under the 
condition that the transverse component of the wave 
vector is small, then we will assume that 1xk  . We 
will also assume that the initial components of the 
particle momentum satisfy the inequalities 

1, 1zp p   . In this case, the condition of the 
initial capture of particles by the wave field 

xk    will take the form 1/ 2 1/ 2x zk p   . If 
this condition is not met, then complete capture does 
not occur (see Fig. 7). However, the presence of a 
non-zero transverse component of the wave vector 
leads to a significant increase in the oscillation 
amplitudes ( max 80zp  ). Note that at 0xk   the 
maximum value of the pulse is only 2

max 0.25zp  

. 

 
 Figure 7. Time dependence of the longitudinal 
momentum of a particle under the following 

initial conditions: 0.5, (0) 5zp   , 0.1xk  ,   

0.05xk  , 1 0.1
2 zp

   ,  xk   

Condition (13) can be easily satisfied by increasing 
the value of the initial longitudinal momentum. 
Thus, Figure 8 shows the dynamics of a particle 
whose initial longitudinal momentum is twice as 
large ( (0) 10zp   ). It is evident that the particle is 
captured and accelerates throughout the entire 
calculation time. A further increase in the initial 
momentum does not change anything qualitatively.  

 
Figure 8. Time dependence of the 
longitudinal momentum of a particle under 
the following initial conditions: 

0.5, (0) 10zp   , 0.1xk  ,   0.05xk  ; 
1 0.05

2 zp
   ;   xk    

 
 
5   Conclusion 

 
Let us note and discuss the most important results. 
The most important is the derivation of formula (13), 
which determines the conditions of phase 
synchronism of the wave and particles. In another 
way, similar expressions in structure were obtained 
in works [9-11]. However, these conditions did not 
include the main bifurcation parameter xk , the 
appearance of which qualitatively changes the 
dynamics of particles - they can be captured by the 
wave field and effectively exchange energy with it. 
      Above, the main attention was paid to the 
acceleration of particles. However, as can be seen in 
Figure 5, particles can also give up their energy to 
the wave. This depends on the initial position of the 
particle relative to the wave phase. Additional 
analysis shows that almost all particles from the 
decelerating phase pass into the accelerating phase. 
Only the times of this transition differ.                 
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      Let us briefly formulate the mechanism of 
particle capture and acceleration: 1. When 0xk   the 
particles in the wave field become oscillators (see 
formulas (9) and (10)) 2. When the wave acquires a 
transverse component of the wave vector 0xk  , the 
phase relations of the wave and particle acquire an 
additional term xk x . 3. The conditions for resonant 
interaction will be the condition of phase stationarity 

0N   (see (13)). This condition takes the form of 
the Adler equation [12,13]. Namely the appearance 
this additional term in expression for phase allows 
resonance to appear 0N  . 
       This mechanism of occurrence of resonances is 
like the mechanism of occurrence of cyclotron 
resonances. It should be noted that all cyclotron 
resonances (except autoresonance) occur only if the 
wave vector has a transverse component ( 0xk  ). 
Indeed, in a magnetic field, particles are transformed 
into oscillators. If the wave has a transverse 
component of the wave vector, then cyclotron 
rotation leads to an additional term included in the 
wave phase. It is this term that allows the stationarity 
of the phase to be realized (the condition of cyclotron 
resonances). Thus, the above-described resonant 
interactions of electrons with a plane wave in a 
vacuum and cyclotron resonances differ from each 
other only by the way born of the oscillators. 
         A few words should be said about the large 
number of works devoted to the study (theoretical 
and experimental) of the dynamics of electrons in the 
field of laser radiation (see, for example, [14-16] and 
the literature cited there). The structure of laser 
radiation can retain the influence of the features of 
the emitters for a long time (at large distances). This 
primarily applies to beams of the Gaussian type. The 
wave fronts of such radiation flows approach a plane 
wave front only at large distances from the source. 
In theory, such beams are described in most cases by 
the parabolic approximation. Such models describe 
many features of laser radiation well. However, it is 
easy to show that the spectrum of such models 
contains slow components ( phv c  ).  Let us show 
this. The initial wave equation is 2 0E k E   ,  
where /k c . We will solve the wave equation in 
the form ( , , )exp( )E u x y z ikz . We substitute this 
solution into the wave equation and neglect the 
second derivative with respect to compared to the 
first derivative. The result will be the following 
equation, which is parabolic type 

                            
2 2

2 2 2 0u u uik
zx y

  
  

 
  

 This equation is the basis from which the Gaussian 
beam and higher beam modes are obtained. It is easy 
to see that the spectrum of this equation has slow 
components. To do this, it is enough to substitute the 
solution in the form of 

( , , ) exp ( x y zu x y z b i k x k y k z      into this equation. 
As a result, after simple transformations, we find 

 exp 2 2E i k k 
 

. These are slow components. 

There are no such components in the original wave 
equation. For this reason, when using such models in 
studying acceleration processes, it is necessary to 
take this feature into account. 
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