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Abstract: - The optical properties of perovskites of the CsSn[Br1–xIx]3 system in the spectral frequency range of 

3–10 THz were studied by quantum-chemical calculations in the framework of DFT using the Wien2K 

package, and the frequency dependences of the refractive index, photoconductivity, and absorption coefficient 

of these nanocrystals were estimated. It has been established that in the indicated frequency range with an 

increase in the iodine content, the absorbing properties of the CsSn[Br1–xIx]3 (x=0.25, 0.50, 0.75, 1.00) system 

increase linearly. 
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1 Introduction 
The use of various nanoscale semiconductor 

materials in photovoltaic (PV) applications in 

recent years have led to the creation of highly 

efficient solar cells [1-3], and hybrid perovskite 

nanostructures and thin films based on them 

have found wide application and rapid 

development due to their unique optoelectronic 

properties, such as excellent mobility carriers, 

long diffusion length, high optical gain, and 

nonlinear response, adjustable and controlled 

band gap, as well as inexpensive methods and 

fabrication technologies [2–4]. Many 

researchers are focusing on their fundamental 

properties to explore the possibilities of new 

applications such as lasers, storage devices, and 

terahertz (THz) detectors [5,6]. Other 

advantages of devices based on perovskite 

nanostructures are the ease of fabrication of 

devices based on them and a wide choice of 

substrate materials and low cost [7]. Moreover, 

the high quantum efficiency and stability of 

perovskite nanostructures under normal 

conditions and many tunable optoelectronic 

properties make them ideal for a wide range of 

electronic and optical applications [8–11]. 

Another aspect of the problem is that thanks to 

the achievements of scientists in recent years, 

perovskites have demonstrated excellent 

performance for LEDs and the desired 

photovoltaic efficiency [12]. Day after day, 

there is a huge demand for ultra-fast tunable 

devices operating especially at terahertz (THz) 

frequencies, as they open up huge opportunities 

for a wide range of applications ranging from 

image processing, spectroscopy, and wireless 

communication [12–15]. The existence of self-

organizing quantum wells due to the alternating 

arrangement of organic and inorganic atomic 

layers in perovskite systems provides an 

additional relaxation path for photoexcited free 

carriers to relax back at ultrafast time scales 

making them ideal candidates for ultrafast 

active photonic devices [16-18]. In recent years, 

perovskites have been widely used to achieve 

unprecedented control over terahertz waves due 

to their tunable optical properties through 

structural reconfiguration [19,20]. In addition, 

the integration of semiconductors with 

metamaterials offers a unique platform for the 

dynamic control and management of longwave 

and terahertz radiation to study the effects of 
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interfacial coupling in the resulting hetero 

nanostructures [21-24]. 

With the development of terahertz time analysis 

(TDS) technology, it has become possible to 

measure terahertz optical properties, such as 

refractive indices and absorption coefficients, 

and study low-frequency optical phonon 

resonances [5, 25–27]. The study of the 

properties of materials using waves of the 

terahertz (THz) range is associated with the 

study of the frequency interval that occupies a 

part of the electromagnetic spectrum between 

the infrared (IR) and microwave ranges, that is, 

the terahertz region of electromagnetic 

frequencies is in the range from 0.3 to 10 THz 

[28]. In recent years, the absorption and 

refractive index of inorganic Sn-containing 

perovskites, including CsSn(Br, I)3 systems, 

have been experimentally studied [29-31], and 

various other perovskite structures in the 

terahertz frequency range from 0.3 to 3 THz 

[32-35], but data on their properties in the 

terahertz frequency range of 3–10 THz are still 

scarce. Therefore, the optical properties of these 

materials in the terahertz frequency range of 

electromagnetic radiation require further study. 

In this article, ab-initio quantum chemical 

calculations are implemented that investigate 

the refractive indices, and adsorption properties 

of the CsSn[Br1–xIx]3 system since the 

prediction of the optical properties of materials 

based on the density functional theory (DFT) 

has become a revolutionary approach that 

allows one to conduct a fairly effective search 

for optical materials even without the 

experimental formation of materials [34, 36-

38]. 
 

2 Materials and Methods 
The relaxation of the orthorhombic phase 

(Pnma, 62) of the CsSn[Br1–xIx]3 system using 

unit cells of 20 atoms was carried out within the 

time-dependent density functional theory (DFT) 

implemented in the Wien2k simulation package 

[39]. The exchange-correlation effects of 

electrons were taken into account using the 

modified Becke-Jones approximation (mBJ) 

[40] since it was shown in many works that 

mBJ gives an accurate and experimentally 

comparable estimate of the bandgap [41-54] 

compared to other known approximations, such 

as GGA and LDA. The outer s-, p-, and d-

electrons were considered valence electrons. All 

calculations were carried out, taking the spin-

polarized and spin-orbit effects into account. 

Calculations of optical properties according to 

the nonstationary density functional theory were 

carried out according to the schemes proposed 

in [55,56]. For the wave function in the 

interstitial region, the plane wave cutoff value 

Kmax = 7/RMT was chosen. For integration in 

k-space in the Brillouin zone (BZ), a grid of 

1000 k-points was used. The charge 

convergence was chosen to be 0.0001e during 

self-consistency cycles. The energy cutoff was 

chosen to be -6.0 Ry, which determines the 

separation of the valence and core states. 
. 

3 Results and Discussion 
According to the results presented in Figure 1, it 

can be seen that the photoconductivity of these 

systems increases slowly and linearly with an 

increase in the iodine concentration in the 

system, as well as with an increase in the 

frequency of terahertz waves. However, for the 

refractive index of these nanocrystals, the 

decrease is very small (less than 3%) since the 

wave frequencies increase, and the value of n in 

the (3-10) terahertz range remains almost 

unchanged (Figure 2), which is in very good 

agreement with results given in [57,58]. 

 

 
Figure 1. Frequency dependence of 

photoconductivity of the CsSn[Br1–xIx]3 system. 
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Figure 2. Frequency dependence of refractive index 

of the CsSn[Br1–xIx]3 system. 

 

The graphs shown in Figure 3 shows that the 

absorption coefficient of the samples of the 

CsSn[Br1–xIx]3 system increases linearly with an 

increase in the frequency of terahertz waves. 

 

 
 
Figure 3. Frequency dependence of absorption 

coefficients CsSn[Br1–xIx]3 system. 

 
Slowly varying refractive indices, as well as high 

coefficients of absorption and photoconductivity of 

the members of the CsSn[Br1–xIx]3 families in the 

terahertz range, make it possible to propose them as 

promising candidate materials for solar cells and 

other optoelectronic devices [59-61]. 

 

4 Conclusions 
The frequency dependences of the optical properties 

of the CsSn[Br1–xIx]3 system in the terahertz 

frequency range from 3 to 10 THz are characterized 

by the DFT method. The absorption spectra, 

photoconductivity, and refractive indices of these 

materials were measured and compared. The change 

in the refractive index of the studied materials was 

less than 3% in the frequency range from 3 to 10 

THz, but the absorbing properties of these materials 

showed a very sharp frequency-dependent 

dependence. The results obtained in this study 

suggest that the studied materials are good 

candidates for solar cells operating with terahertz 

electromagnetic radiation, integrated circuits, and 

ultra-low-loss terahertz waveguides. 
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