oalogo2  

AUTHOR(S): 

Juan Garcia, Juan Ruiz, Juan Carlos Trillo

 

TITLE

N-Dimensional Multiresolution Algorithms for Point Values

pdf PDF

 

ABSTRACT

Multiresolution algorithms are used in several applications in order to attain data compression, denoising or computional time reduction in algorithms dealing with large data. Our objective is to introduce nonlinear reconstructions in the N-dimensional case and compare their performances when applied with and without error control algorithms. This paper describes then the N-dimensional multiresolution algorithms with and without error control strategies in discrete point values as a generalization to N dimensions of the work done in this direction, see [13], [14], [11], [2], [16]. Some numerical experiments are included to exemplify the utility of these algorithms. In the results it can be observed that nonlinear stable methods improve their linear counterparts in presence of discontinuities in the data. Even non-stable nonlinear methods can overcome the instabilities and get better results than linear ones when used with error control.

 

KEYWORDS

Multiresolution schemes, N-dimensional, reconstructions, point values, error control, nonlinearity

 

REFERENCES

[1] S. Amat, Nonseparable multiresolution with error control, Appl. Math. Comput. 145(1), 2003, pp. 117–132.

[2] S. Amat, F. Ar'andiga, A. Cohen and R. Donat, Tensor product multiresolution analysis with error control for compact image representation, Signal Process. 82(4), 2002, pp. 587–608.

[3] S. Amat, F. Ar'andiga, A. Cohen, R. Donat, G. Garcia and M. von Oehsen, Data compression with ENO schemes: a case study, Appl. Comput. Harmon. Anal. 11(2), 2001, pp. 273–288.

[4] S. Amat, S. Busquier and J.C. Trillo, Stable biorthogonal multiresolution transforms,Numer. Anal. Indust. Appl. Math. 1(3), 2006, pp. 229– 239.

[5] S. Amat, K. Dadourian, J. Liandrat and J. C. Trillo, High order nonlinear interpolatory reconstruction operators and associated multiresolution schemes, J. Comput. Appl. Math., 253, 2013, pp. 163–180.

[6] S. Amat, R. Donat, J. Liandrat and J.C. Trillo, Analysis of a new nonlinear subdivision scheme. Applications in image processing, Found. Comput. Math. 6(2) , 2006, pp. 193-225.

[7] S. Amat, R. Donat and J.C. Trillo, On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation, J. Math. Anal. Appl. 358(1), 2009, pp. 18–27.

[8] S. Amat and J. Liandrat, On the stability of PPH nonlinear multiresolution, Appl. Comp. Harm. Anal. 18(2), 2005, pp. 198–206.

[9] F. Ar'andiga and R. Donat, Nonlinear multiscale decomposition: the approach of A.Harten, Numer. Algorithms 23, 2000, pp. 175–216.

[10] F. Ar'andiga and R. Donat, Stability through synchronization in nonlinear multiscale transformations, SIAM J. Sci. Comput. 29(1), 2007, pp. 265–289.

[11] R.L. Claypoole, G. M. Davis,W. Sweldens and R.G. Baraniuk, Nonlinear wavelet transforms for image coding via lifting, IEEE Trans. Image Process 12(12), 2003, pp. 1449–1459.

[12] A. Cohen, N. Dyn and B. Matei, Quasilinear subdivision schemes with applications to ENO interpolation, Appl. Comp. Harm. Anal. 15, 2003, pp. 89–116.

[13] A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12, 1993, pp. 153–192.

[14] A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33(3), 1996, pp. 1205–1256. Juan Garcia et al. International Journal of Mathematical and Computational Methods http://www.iaras.org/iaras/journals/ijmcm ISSN: 2367-895X 80 Volume 2, 2017

[15] Hung-Hseng Hsu, Yi-Qiang Hu and Bing-Fei Wu, An integrated method in wavelet-based image compression, J. Franklin Inst. 335(6), 1998, pp. 1053-1068.

[16] J. Ruiz and J.C. Trillo, N-dimensional error control multiresolution algorithms for the cell average discretization, Math. Comput. Simulation, 2017, DOI information: 10.1016/j.matcom.2017.07.009.

[17] B. Matei and S. Meignen, Analysis of a class of nonlinear and non-separable multiscale representations, Numer. Algorithms 60(3), 2012, pp. 391-418.

[18] B. Matei and S. Meignen, Nonlinear and nonseparable bidimensional multiscale representation based on cell-average representation, IEEE Trans. Image Process 24(11), 2015, pp. 4570- 4580.

[19] W. Sweldens, The lifting scheme: a custumdesign construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3(2), 1996, pp. 186–200.

[20] W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29(2), 1998, pp. 511–546.

[21] W. Sweldens and P. Schr¨oder, Building your own wavelets at home, Wavelets in Computers Graphics, ACM SIGGRAPH Course notes, 1996, pp. 15–87.

[22] B. Zhang, J.M. Fadili and J.L. Starck, Wavelets, ridgelets, and curvelets for Poisson noise removal, IEEE Trans. Image Process. 17(7), 2008, pp. 1093–1108.

Cite this paper

Juan Garcia, Juan Ruiz, Juan Carlos Trillo. (2017) N-Dimensional Multiresolution Algorithms for Point Values. International Journal of Mathematical and Computational Methods, 2, 76-81

 

cc.png
Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0