REFERENCES
[1] Aris, R., Vectors, tensors, and the basic equations of fluid mechanics, New York, USA, Dover, 1989.
[2] Cannata, G., Lasaponara, F. & Gallerano, F., Non-Linear Shallow Water Equations numerical integration on curvilinear boundaryconforming grids, WSEAS Transactions on Fluid Mechanics, No. 10, 2015, pp. 13-25.
[3] Gallerano, F., Cannata, G. & Lasaponara, F., Numerical simulation of wave transformation, breaking run-up by a contravariant fully nonlinear Boussinesq model, Journal of Hydrodynamics B, No. 28, 2016, pp. 379-388.
[4] Gallerano, F., Cannata, G. & Lasaponara, F., A new numerical model for simulations of wave transformation, breaking and long shore currents in complex coastal regions, International Journal for Numerical Methods in Fluids, No. 80, 2016, pp. 571-613.
[5] Gallerano, F., Cannata, G. & Tamburrino, M., Upwind WENO scheme for shallow water equations in contravariant formulation, Computers & Fluids, No. 62, 2012, pp. 1-12.
[6] Liu, X., Osher, S. & Chan, T., Weighted essentially non-oscillatory schemes. Journal of Computational Physics, No. 115(1), 1994, pp. 200-212.
[7] Rossmanith, J.A., Bale, D.S. & LeVeque, R.J., A wave propagation algorithm for hyperbolic systems on curved manifolds, Journal of Computational Physics, No. 199(2), 2004, pp. 631-662.
[8] Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. & Grilli, S.T., A high-order adaptive timestepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Coastal Engineering, No. 193(1), 1998, pp. 90- 124.
[9] Spiteri, R.J. & Ruuth, S.J., A new class of optimal high-order strong stability-preserving time discretization methods, SIAM Journal on Numerical Analysis, No. 40(2), 2002, pp. 469- 491.
[10] Tonelli, M. & Petti, M., Hybrid finite-volume finite-difference scheme for 2HD improved Boussinesq equations. Coastal Engineering, No. 56, 2009, pp. 609-620.
[11] Toro, E., Shock-capturing methods for freesurface shallow flows, John Wiley and Sons: Manchester, 2001.
[12] Valiani, A., Caleffi, V. & Zanni, A., Case study: Malpasset dam-break simulation using a two-dimensional finite volume method, Journal of Hydraulic Engineering, No. 128, 2002, pp. 460-472.
[13] Xing, Y. & Shu, C.W., High order wellbalanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Journal of Computational Physics, No. 214(2), 2006, pp. 567-598.
|