oalogo2  

AUTHOR(S): 

Igor M. Neelov, Elena V. Popova, Dilorom N. Khamidova, Irina I. Tarasenko

 

TITLE

Complexes of Lysine Dendrimers of 2nd Generation with Semax and Epithalon Peptides. Molecular Dynamics Simulation

pdf PDF

 

ABSTRACT

Dendrimers are widely used as vehicles for drug and gene delivery. In present study complexes of lysine dendrimer of second generation and two types of therapeutic regulatory peptides (Semax and Epithalon) were investigated. Two systems containing lysine dendrimer and 16 oppositely charged model peptides (Semax or Epithalon) were simulated using full atomic models and molecular dynamics method. Both complex formation and equilibrium properties of complexes were studied. It was obtained that dendrimer forms complexes with both peptides very quickly and the sizes and the structures of complexes are very close to each other. These or similar complexes could be used in future for delivery of different therapeutics peptides to patients body.

 

KEYWORDS

Lysine dendrimer, Semax, Epithalon, Complex, Molecular dynamics simulation

 

REFERENCES

 

[1] B. Hess, C. Kutzner, D. Van Der Spoel, E. Lindahl, “GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation”. Journal of Chemical Theory and Computation, vol. 4, 2008, pp. 435–447.

[2] V. Hornak, R. Abel, A. Okur, D. Strockbine, A. Roitberg, C. Simmerling, “Comparison of multiple amber force fields and development of improved protein backbone parameters”. Proteins: Structure Function and Genetics, vol. 65, 2006, pp. 712–725.

[3] A. Darinskii, Y. Gotlib, M. Lukyanov, I. Neelov, “Computer simulation of the molecular motion in LC and oriented polymers”. Progr. Colloid & Polym. Sci., vol. 91, 1993, pp.13-15.

[4] A.A. Darinskii, Y.Y. Gotlib, A.V. Lyulin, I.M. Neelov, “Computer modeling of polymer chain local dynamics in a field of a liquid crystal type”. Vysokomolec. Soed. Ser. A, vol. 33, 1991, pp.1211-1220.

[5] A. Darinskii, A. Lyulin, I. Neelov, 'Computer simulations of molecular motion in liquid crystals by the method of Brownian dynamics”. Macromol.Theory & Simulation, vol. 2, 1993, pp. 523-530.

[6] J. Ennari, M. Elomaa, I. Neelov, F. Sundholm, “Modelling of water free and water containing solid polyelectrolytes”. Polymer, vol. 41, 2000, pp. 985-990.

[7] J. Ennari, I. Neelov, F. Sundholm, “Comparison of Cell Multipole and Ewald Summation Methods for Solid Polyelectrolyte”. Polymer, vol. 41, 2000, pp. 2149-2155.

[8] J. Ennari, I. Neelov, F. Sundholm, “Molecular Dynamics Simulation of the PEO Sulfonic Acid Anion in Water”. Comput Theor Polym Sci., vol. 10, 2000, pp. 403-410.

[9] J. Ennari, I. Neelov, F. Sundholm, “Molecular dynamics simulation of the structure of PEO based solid polymer electrolytes”. Polymer, vol. 41, 2000, pp. 4057-4063.

[10] J. Ennari, I. Neelov, F. Sundholm, “Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling”. Polymer, vol. 42, 2001, pp. 8043–8050.

[11] J. Ennari, I. Neelov, F. Sundholm, “Modellling of gas transport properties of polymer electrolytes containing various amount of water”. Polymer, vol. 45, 2004, pp. 4171-4179.

[12] I.M. Neelov, D.B. Adolf, A.V. Lyulin, G.R. Davies, “Brownian dynamics simulation of linear polymers under elongational flow: Bead–rod model with hydrodynamic interactions”. Journal of Chemical Physics, vol. 117, 2002, pp.4030-4041.

[13] I.M. Neelov, D.B. Adolf, “Brownian Dynamics Simulation of Hyperbranched Polymers under Elongational Flow”. J. Phys. Chem. B., vol. 108, 2004, pp. 7627-7636.

[14] I.M. Neelov, D.B. Adolf, “Brownian Dynamics Simulations of Dendrimers under Elongational Flow: Bead-Rod Model with Hydrodynamic Interactions”. Macromolecules, vol. 36, 2003, pp. 6914-6924.

[15] P.F. Sheridan, D.B. Adolf, A.V. Lyulin, I. Neelov, G.R. Davies, “Computer simulations of hyperbranched polymers: The influence of the Wiener index on the intrinsic viscosity and radius of gyration”. Journal of Chemical Physics, vol. 117, 2002, pp. 7802-7812.

[16] M.A. Mazo, M.Y. Shamaev, N.K. Balabaev, A.A.Darinskii, I.M.Neelov “Conformational mobility of carbosilane dendrimer: Molecular dynamics simulation”. Physical Chemistry and Chemical Physics, vol. 6, 2004, pp. 1285-1289.

[17] I.M. Neelov, D.B. Adolf, T.C.B. McLeish, E. Paci. “Molecular Dynamics Simulation of Dextran Extension by Constant Force in Single Molecule AFM”. Biophysical J., vol. 91, 2006, pp. 3579–3588.

[18] I.M. Neelov, D.A. Markelov, S.G. Falkovich, M.Yu. Ilyash., B.M. Okrugin, A.A. Darinskii, “Mathematical modeling of lysine dendrimers. Temperature dependencies”. Vysokomolec. Soed. Ser. A , vol. 55, 2013, pp. 963–970.

[19] S. Falkovich, D. Markelov, I. Neelov, A. Darinskii, “Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers”. Journal of Chemical Physics, vol. 139, 2013, pp. 064903.

[20] I. Neelov, S. Falkovich, D. Markelov, E. Paci, A. Darinskii, H. Tenhu, “Molecular dynamics of lysine dendrimers. Computer simulation and NMR”, In: Dendrimers in Biomedical Applications, Eds. London: Royal Society of Chemistry, 2013, pp. 99–114.

[21] I.M. Neelov, A.A. Mistonova, A.Yu. Khvatov, V.V. Bezrodny, “Molecular dynamics simualtion of peptide polyelectrolytes”. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, vol. 4, 2014, pp. 169–175.

[22] E.V. Popova, O.V. Shavykin, I.M. Neelov, F. Leermakers, “Molecular dynamics simulation of lysine dendrimer and Semax peptides interaction”, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, vol. 4, 2016, pp. 716–724.

[23] O.V. Shavykin, E.V. Popova, A.A. Darinskii, I.M. Neelov, F. Leermakers, “Computer simulation of local mobility in dendrimers with asymmetric branching by brownian dynamics method”. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, vol.16, 2016, pp. 893-902.

[24] M.Yu. Ilyash, D.N. Khamidova, B.M. Okrugin, I.M. Neelov, “Computer Simulation of Lysine Dendrimers and their Interactions with Amyloid Peptides”. WSEAS Transaction on Biology and Biomedicine, vol. 12, 2015, pp. 79-86.

[25] E. Popova, B. Okrugin, I. Neelov, “Molecular Dynamics Simulation of Interaction of Short Lysine Brush and Oppositely Charged Semax Peptides”. Natural Science, vol. 8, 2016, pp. 499-510.

[26] D.A. Markelov, S.G. Falkovich, I.M. Neelov, M.Yu. Ilyash, V.V. Matveev, E. Lahderanta, P. Ingman, A.A. Darinskii, “Molecular dynamics simulation of spin-lattice NMR relaxation in poly-L-lysine dendrimers. Manifestation of the semiflexibility effect”. Physical Chemistry and Chemical Physics, vol. 17, 2015, pp. 3214–3226.

[27] O.V. Shavykin, I.M. Neelov, A.A. Darinskii, “Is the manifestation of the local dynamics in the spin–lattice NMR relaxation in dendrimers sensitive to excluded volume interactions?”, Physical Chemistry and Chemical Physics, vol. 18, 2016, pp. 24307-24317.

[28] I. Neelov, E. Popova, “Complexes of Lysine Dendrimer of 2nd/3rd Generations and Semax Peptides. Molecular Dynamics Simulation”. WSEAS Transaction on Biology and Biomedicine, vol.14, 2017, pp. 75-82.

[29] B. Okrugin, I. Neelov, O. Borisov, F. Leermakers, “Structure of asymmetrical peptide dendrimers: insights given by self-consistent field theory”, Polymer, vol.125, 2017, pp. 292-302.

[30] I. Neelov, E. Popova. “Molecular Dynamics Simulation of Complex Formation by Lysine Dendrigraft of Second Generation and Semax Peptide,” International J. of Materials, vol. 4, 2017, pp. 16-21.

[31] J.Gowdy, M. Batchelor, I. Neelov, E.Paci Nonexponential Kinetics of Loop Formation in Proteins and Peptides: A Signature of Rugged Free Energy Landscapes? J. Phys. Chem. B., vol. 121, 2017, pp.9518-9525.

[32] V.Sadovnichy, A.Tikhonravov, V.Voevodin, V. Opanasenko Contemporary high performance computing: From petascale toward exascale. Eds. Boca Raton, USA, 2013, pp. 283–307.

 

Cite this paper

Igor M. Neelov, Elena V. Popova, Dilorom N. Khamidova, Irina I. Tarasenko. (2017) Complexes of Lysine Dendrimers of 2nd Generation with Semax and Epithalon Peptides. Molecular Dynamics Simulation. International Journal of Biochemistry Research, 2, 28-33

 

cc.png
Copyright © 2017 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0