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Abstract: In the digital plane Z2, we define connectedness induced by a set of walks of the same lengths in the
8-adjacency graph. The connectedness is shown to satisfy a digital analogue of the Jordan curve theorem. This
proves that the 8-adjacency graph with a set of walks of the same lengths provides a convenient structure on the
digital plane Z2 for the study of digital images.
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1 Introduction

Discrete mathematics has many applications not only
in mathematics itself but also in numerous other dis-
ciplines. This is caused by the rapid computeriza-
tion, hence discretization, of most modern technolo-
gies used in our everyday life. For example, graph the-
ory provides powerful tools for solving various types
of problems, particularly those that occur in image
processing. Indeed, digital topology, a theory that was
founded for studying the topological and geometric
properties of digital images, is based on graph the-
ory rather than topology (cf. [4-5, 7-8]). One of the
basic tasks of digital topology is to find a convenient
structure on the digital plane Z2 allowing us to study
and process digital images. In the classical approach
to digital topology, adjacency graphs with the vertex
set Z2 are used to provide such structures, namely the
well-known 4- and 8-adjacency graphs. A problem
connected with adopting this approach is that neither
4-adjacency nor 8-adjacency graph allows for an ana-
logue of the Jordan curve theorem (recall that the clas-
sical Jordan curve theorem states that a simple closed
curve separates the real, i.e., Euclidean, plane into
precisely two components). This problem is usually
solved by using a combination of the two adjacencies
and most of the graphical software is based on em-
ploying such a combination.

In 1990, E.D. Khalimsky, R. Kopperman and P.R.
Meyer [2] proposed a new approach to digital topol-
ogy based on using a single structure on Z2, the so-
called Khalimsky topology. This approach, which has
been developed by many authors (see, e.g., [6] and

[9]), is equivalent to the one based on using a partic-
ular graph, the connectedness graph of the Khalim-
sky topology, for structuring Z2. It the present note,
we build on the classical approach to digital topology.
We show that, to obtain a convenient structure on the
digital plane, we may employ the 8-adjacency graph
together with a set of paths of the same lengths. Such
a structure proved to have an advantage over the Khal-
imsky topology.

In [10], graphs with path partitions are studied
where the path partitions considered are nothing but
certain sets of walks. It was shown in [10] that path
partitions provide graphs with a special connectedness
that allows for using these graphs as convenient back-
ground structures on the digital spaces for the study
of digital images. In the present paper, in difference to
[10], we employ sets of walks, which are more general
than path partitions, and we restrict our considerations
to the 8-adjacency graph on Z2.

2 Preliminaries
For the graph-theoretic terminology, we refer to [1].
We will work with (simple) graphs, i.e., pairs G =
(V,E) where V ̸= ∅ is a set, the so-called vertex set
of G, and E ⊆ {{x, y}; x, y ∈ V, x ̸= y} is the so-
called set of edges. Two vertices x, y ∈ V are said to
be adjacent if {x, y} ∈ E. A walk in G is a (finite)
sequence (xn| i ≤ n), i.e., (x0, x1, ..., xn), of vertices
of V such that xi is adjacent to xi+1 whenever i < n;
the non-negative integer n is called the length of the
walk (xn| i ≤ n). A walk (xn| i ≤ n) in G is called
a path if xi ̸= xj whenever i, j ≤ n, i ̸= j, and it is
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called a circle if xi ̸= xj whenever i, j < n, i ̸= j,
and x0 = xn.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs.
We say that G1 is a subgraph of G2 if V1 ⊆ V2 and
E1 ⊆ E2. If, moreover, V1 = V2, then G1 is called a
factor of G2. A subgraph G1 = (V1, E1) of a graph
G2 = (V2, E2) is said to be its induced subgraph if
E1 = E2 ∩ {{x, y}; x, y ∈ V1}. The cartesian prod-
uct of G1 and G2 is the graph G1×G2 = (V1×V2, E)
where E = {{(x1, x2), (y1, y2)}; (x1, x2), (y1, y2) ∈
V1 × V2, , {x1, y1} ∈ E1, {x2, y2} ∈ E2} and the
strong product of G1 and G2 is the graph G1 ⊗G2 =
(V1 × V2, E) where, for any {(x1, x2), (y1, y2)} with
(x1, x2), (y1, y2) ∈ V1 × V2, {(x1, x2), (y1, y2)} ∈ E
if and only if one of the following three conditions is
fulfilled:

(1) {x1, y1} ∈ E1 and {x2, y2} ∈ E2,
(2) x1 = y1 and {x2, y2} ∈ E2,
(3) {x1, y1} ∈ E1 and x2 = y2.

Thus, G1 ×G2 is always a factor of G1 ⊗G2.

3 Graphs with walk sets
Given a graph G and a positive integer n, we denote
by Pn(G) the set of all walks of length n in G. For
every set of walks (briefly, walk set) B ⊆ Pn(G), we
put
B−1 = {(xi| i ≤ n) ∈ Pn(G); (xn−i| i ≤ n) ∈ B},
B̂ = {(xi| i ≤ m) ∈ Pm(G); 0 < m ≤
n and there exists (yi| i ≤ n) ∈ B such that xi =

yi for every i ≤ m} (so that B ⊆ B̂), and
B∗ = B̂ ∪ B̂−1.

Let Gj be a graph and Bj ⊆ Pn(Gj) for ev-
ery j ∈ {1, 2}. The we put B1 ⊗ B2 = B
where B ⊆ Pn(G1 ⊗ G2) is the subset such that,
for any ((x0, y0), ..., (xn, yn)) ∈ Pn(G1 ⊗ G2),
((x0, y0), ..., (xn, yn)) ∈ B if and only if one of the
following three conditions is satisfied:

(1) (x0, ..., xn) ∈ B1 and (y0, ..., yn} ∈ B2,
(2) x0 = ... = xn and (y0, ..., yn} ∈ B2,
(3) (x0, ..., xn) ∈ B1 and y0 = ... = yn.

Definition 1 Let G = (V,E) be a graph and B ⊆
Pn(G). A sequence C = (xi| i ≤ m), m > 0, of
vertices of V is called a B-walk in G if there is an
increasing sequence (ik| k ≤ p) of non-negative inte-
gers with i0 = 0 and ip = m such that ik − ik−1 ≤ n
and (xi| ik−1 ≤ i ≤ ik) ∈ B∗ for every k with
0 < k ≤ p. The sequence (ik| k ≤ p) is said to
be a binding sequence of C.

Definition 2 Let G = (V,E) be a graph and B ⊆
Pn(G). A set A ⊆ V is said to be B-connected in G
if any two different vertices of G belonging to A can

be joined by a B-walk in G contained in A. A maximal
B-connected set in G is called a B-component of G.
A B-walk in G is called a B-circle if xi ̸= xj for all
i, j < m with i ̸= j and x0 = xm.

Given a graph G = (V,E), a walk set B ⊆
Pn(G), and a subset X ⊆ V , we say that X separates
G into precisely two B-components if the induced
subgraph H of G with the vertex set V −X consists
of precisely two B′-components where B′ ⊆ Pn(H)
is the walk set given by B′ = Pn(G) ∩ {(xi| i ≤
n); xi ∈ V −X for all i < n}.

Proposition 3 Let Gj = (Vj , Ej) be a graph, Bj ⊆
Pn(Gj), and Yj ⊆ Vj be a subset for every j ∈ {1, 2}.
If Yj is Bj-connected in Gj for every i ∈ {1, 2}, then
Y1 × Y2 is B1 ⊗ B2-connected in G1 ⊗G2.

Proof: Let Yj = (yji | i ≤ pj) ∈ B∗
j for every j ∈

{1, 2}. For each j ∈ {1, 2}, there is a walk (xji | i ≤
n) ∈ B such that yji = xji for all i ≤ pj or yji = xjpj−i

for all i ≤ pj . Let y ∈ {y1i ; i ≤ p1} × {y2i ; i ≤ p2}
be an arbitrary element. Then, for each j ∈ {1, 2},
there is a non-negative integer qj , qj < pj , such that
y = (y1q1 , y

2
q2). Then, clearly, either (y1q1−i| i ≤ q1) or

(y1i | q1 ≤ i ≤ p1) is an element of B∗
1 with the first

member y1q1 and the last one x10. Denote this element
of B∗

1 by (z1i | i ≤ r1) and put C1 = ((z1i , y
2
q2)| i ≤

r1). Clearly, C1 is an element of (B1 ⊗ B2)
∗ with all

members belonging to {y1i ; i ≤ p1} × {y2i ; i ≤ p2},
with the first member y, and with z1r1 = x10. Clearly,
either (y2q2−i| i ≤ q2) or (y2i | q2 ≤ i ≤ p2) is an
element of B∗

2 with the first member y2q2 and the last
one x20. Denote this element of B∗

2 by (z2i | i ≤ r2) and
put C2 = ((x10, z

2
i )| i ≤ r2). Then C2 is an element of

(B1 ⊗ B2)
∗ with all members belonging to {y1i ; i ≤

p1} × {y2i ; i ≤ p2} such that z20 = y2q2 and z2r2 = x20.
Put C = ((s1i , s

2
i )| i ≤ 2q2 + 1) where (s1i , s

2
i ) =

(z1i , y
2
q2) for i = 0, 1, ..., r1 and (s1i , s

2
i ) = (x10, y

2
i−r1

)
for i = r1 + 1, r1 + 2, ..., r1 + r2. Then C is a B1 ⊗
B2-walk in G1 ⊗ G2 with all members belonging to
{y1i ; i ≤ p1}×{y2i ; i ≤ p2}, with the first member y,
and with the last one (x10, x

2
0). We have shown that any

point of {y1i ; i ≤ p1}×{y2i ; i ≤ p2} can be connected
with the point (x10, x

2
0) by a B1⊗B2-walk in G1⊗G2

contained in {y1i ; i ≤ p1} × {y2i ; i ≤ p2}. Thus,
Y1 × Y2 is B1 ⊗ B2-connected in G1 ⊗ G2 whenever
Y1 ∈ B∗

1 and Y2 ∈ B∗
2 .

Let Yj = (xji | i ≤ pj) be a Bj-walk in Gj for
every j ∈ {1, 2}. For each j ∈ {1, 2}, let (ijk| k ≤
qj) be the binding sequence of (xji | i ≤ pj), i.e., a
sequence of non-negative integers with ij0 = 0 and
ijqj−1 = pj − 1 such that (xji | i

j
k ≤ i ≤ ijk+1) is an
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element of B∗
j whenever k ≤ qj . For every j ∈ {1, 2},

putting Cj
k = {xji ; i

j
k ≤ i ≤ ijk+1}, we get {xji ; i ≤

pj} =
∪

k<qj
Cj
k. Therefore, {x1i ; i ≤ p1}×{x2i ; i ≤

p2} =
∪

k1<q1

∪
k2<q2

(C1
k1

× C2
k2
) where C1

k1
× C2

k2
is B1 ⊗ B2-connected in G1 ⊗G2 whenever kj < qj ,
j = 1, 2, by the previous part of the proof. Thus, for
any k1 < q1, (C1

k1
×C2

k2
| k2 < q2) is a finite sequence

of B1⊗B2-connected sets in G1⊗G2 with nonempty
intersection of every consecutive pair of them. Hence,
the set

∪
k2<q2

(C1
k1

× C2
k2
) is B1 ⊗ B2-connected in

G1⊗G2. Consequently, the set
∪

k1<q1

∪
k2<q2

(C1
k1
×

C2
k2
) is B1 ⊗ B2-connected in G1 ⊗ G2. Therefore,

Y1 × Y2 is B1 ⊗ B2-connected in G1 ⊗ G2 whenever
Y1 is a B1-walk in G1 and Y2 is a B2-walk in G2.

Let Yj be a Bj-connected set in Gj for every j ∈
{1, 2} and let (x1, x2), (y1, y2) ∈ G1⊗G2 be arbitrary
points. Then, for each j ∈ {1, 2}, there is a Bj-walk
(zji | i ≤ pj) in Gj joining the points xj and yj which
is contained in Yj . The set {z1i | i ≤ p1} × {y2i | i ≤
p2} contains the points (x1, x2) and (y1, y2) and is a
B1 ⊗ B2-connected set in G1 ⊗ G2 by the previous
part of the proof. Thus, there is a B1 ⊗ B2-walk C in
G1⊗G2 joining the points (x1, x2) and (y1, y2) which
is contained in {z1i | i ≤ p1} × {y2i | i ≤ p2}. Since
{z1i | i ≤ p1}×{y2i | i ≤ p2} ⊆ Y1×Y2, C is contained
in Y1 × Y2, too, and so Y1 × Y2 is B1 ⊗B2-connected
in G1 ⊗G2. The proof is complete. ⊓⊔

4 8-adjacency graph with a set of
walks

Recall that the 8-adjacency graph on Z2 is the
graph (Z2, A8) where A8 = {{(x1, y1), (x2, y2)};
(x1, y1), (x2, y2) ∈ Z2, max{|x1 − x2|, |y1 − y2|} =
1}. In the sequel, G will denote the 8-adjacency graph
on Z2. It is evident that G = Z2 ⊗Z2 where Z2 is the
2-adjacency graph on Z, i.e., the graph (Z, A2) where
A2 = {{p, q}; p, q ∈ Z, |p− q| = 1}.

Let B ⊆ P2(Z2) be the set given as follows:
B = {(xi| i ≤ 2) ∈ P2(Z2); there exists an odd
number l ∈ Z such that xi = 2l + i for all i ≤ 2 or
xi = 2l − i for all i ≤ 2}.

Using results of the previous section, we may pro-
pose a new structure on the digital plane convenient
for the study of digital images. Such a structure is ob-
tained as the 8-adjacency graph on Z2 (i.e., the strong
product of two copies of the 2-adjacency graph on Z)
with the walk set given by the strong product of two
copies of the walk set B.

Since the digital line Z is evidently B-connected
in the graph Z2, the digital plane Z2 is B- connected
in the 8-adjacency graph G by Proposition 3.
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Figure 1: A section of the graph H
.

We denote by H the factor of the 8-adjacency
graph G whose edges are those {(x1, y1), (x2, y2)} ∈
A8 that satisfy one of the following four conditions
for some k ∈ Z:
x1 − y1 = x2 − y2 = 4k,
x1 + y1 = x2 + y2 = 4k,
x1 = x2 = 4k,
y1 = y2 = 4k.
A section of the graph H is demonstrated in Fig-
ure 1 where only the vertices (4k, 4l), k, l ∈ Z, are
marked out (by bold dots) and thus, on every edge
drawn between two such vertices, there are 3 more
(non-displayed) vertices, so that such an edge repre-
sents 4 edges in the graph H .

Definition 4 A B ⊗ B-circle J in the graph G is said
to be fundamental if it is a circle in H and, whenever
(4k + 2, 4l + 2) ∈ J for some k, l ∈ Z, one of the
following two conditions is true:
{((4k+2)−1, (4l+2)−1), ((4k+2)+1, (4l+2)+
1)} ⊆ J ,
{((4k+2)−1, (4l+2)+1), ((4k+2)+1, (4l+2)−
1)} ⊆ J .

The fundamental circles are just the circles in H
that turn at the bold vertices only as demonstrated in
Figure 1.

Theorem 5 If J is a fundamental circle in the graph
G, then J separates G into precisely two B ⊗ B-
components, one finite and the other infinite, such that
the union of any of them with J is a B ⊗ B-connected
set in G.

Sketch of proof: For every point z = (4k+2, 4l+2),
k, l ∈ Z, each of the following four subsets of Z2 is
called a fundamental triangle (given by z):
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{(r, s) ∈ Z2; 4k ≤ r ≤ 4k+4, 4l ≤ s ≤ 4l+4, s ≤
r + 4l − 4k},
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k+4, 4l ≤ s ≤ 4l+4, s ≥
4k + 4l + 4− r},
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k+4, 4l ≤ s ≤ 4l+4, s ≥
r + 4l − 4k},
{(r, s) ∈ Z2; 4k ≤ r ≤ 4k+4, 4l ≤ s ≤ 4l+4, s ≤
4k + 4l + 4− r}.
Clearly, the edges of any fundamental triangle form a
B ⊗ B-circle in G. It may be shown that every fun-
damental triangle is B ⊗ B-connected in G and so is
also every set obtained from a fundamental triangle by
subtracting some of its edges.
We will say that a (finite or infinite) sequence S of
fundamental triangles is a tiling sequence if the mem-
bers of S are pairwise different and every member of
S, excluding the first one, has an edge in common
with at least one of its predecessors. Given a tiling
sequence S of fundamental triangles, we denote by
S′ the sequence obtained from S by subtracting, from
every member of the sequence, all its edges that are
not shared with any other member of the sequence.
By the firs part of the proof, for every tiling sequence
S of fundamental triangles, the set

∪
{T ; T ∈ S} is

B ⊗ B-connected in G and the same is true for the set∪
{T ; T ∈ S′}.

Let J be a fundamental circle in the graph G. Then
J constitutes the border of a polygon SF ⊆ Z2 con-
sisting of fundamental triangles. More precisely, SF

is the union of some fundamental triangles such that
any pair of them is disjoint or meets in just one edge
in common. Let U be a tiling sequence of the funda-
mental triangles contained in SF . Since SF is finite,
U is finite, too, and we have SF =

∪
{T ; T ∈ U}. It

may be shown that every fundamental triangle T ∈ U
is B⊗B-connected in G. Thus, SF is B⊗B-connected
in G, too. Similarly, U ′ is a finite sequence with
SF − J =

∪
{T ; T ∈ U ′} and we may show that

every member of U ′ is B ⊗ B-connected in G. It fol-
lows that SF − J is B ⊗ B-connected in G, too.
Further, let V be a tiling sequence of fundamental tri-
angles which are not contained in SF . Since the com-
plement of SF in Z2 is infinite, V is infinite, too. Put
SI =

∪
{T ; T ∈ V }. It may be shown that every

fundamental triangle T ∈ V is B⊗B-connected in G,
so that SI is B⊗B-connected in G, too. Similarly, V ′

is a finite sequence with SI − J =
∪
{T ; T ∈ V ′}

and we may show that every member of V ′ is B ⊗ B-
connected in G. Therefore, SI−J is B⊗B-connected
in G, too.
It may easily be seen that every B ⊗ B-walk C =
(zi| i ≤ k), k a positive integer, in G connecting
a point of SF − J with a point of SI − J meets J
(i.e., meets an edge of a fundamental triangle which
is contained in J). Therefore, the set Z2 − J =

(SF − J) ∪ (SI − J) is not B ⊗ B-connected in G.
We have shown that J separates G into precisely two
components SF − J and SI − J , SF − J finite and
SI − J infinite, with SF and SI B ⊗ B-connected in
G. ⊓⊔

5 Conclusion
We proposed a new structure of connectedness in
the digital plane given by a sets of paths in the 8-
adjacency graph. In Theorem 5, we showed that fun-
damental circles in the graph H (i.e., circles in the
graph demonstrated in Figure 1) separate the digital
plane Z2 into precisely two components (with respect
to the connectedness given by the set of paths in the 8-
adjacency graph) so that they may be considered to be
digital analogues of the Jordan curves in the Euclidean
plane. The fundamental circles may consist of hori-
zontal, vertical and diagonal parts and their advantage
over the digital Jordan curves in the Khalimsky topol-
ogy determined in [2] is that they may turn at the acute
angle π

4 - see Figure 1 (in the Khalimsky topology,
the Jordan curves may never turn at the acute angle
π
4 ). Since digital Jordan curves represent borders of
objects in digital images (cf. [3]), the proposed con-
nectedness structure in the digital plane given by the
set B of walks in the 8-adjacency graph provides a
richer variety of applications than the one provided by
the Khalimsky topology.
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